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Abstract— Differentially private stochastic gradient descent
(DP-SGD) has become the standard algorithm for training
machine learning models with rigorous privacy guarantees.
Despite its widespread use, the theoretical understanding of its
long-run behavior remains limited: existing analyses typically
establish convergence in expectation or with high probability,
but do not address the almost sure convergence of single
trajectories. In this work, we prove that DP-SGD converges
almost surely under standard smoothness assumptions, both in
nonconvex and strongly convex settings, provided the step sizes
satisfy some standard decaying conditions. Our analysis extends
to momentum variants such as the stochastic heavy ball (DP-
SHB) and Nesterov’s accelerated gradient (DP-NAG), where we
show that careful energy constructions yield similar guarantees.
These results provide stronger theoretical foundations for differ-
entially private optimization and suggest that, despite privacy-
induced distortions, the algorithm remains pathwise stable in
both convex and nonconvex regimes.

I. INTRODUCTION

In the training of machine learning models, maintaining
the privacy of training data is of paramount importance.
Particularly in domains such as health and finance, it is
important that an adversary cannot reconstruct training data
from the trained models. Unfortunately, generative models
risk overfitting to their training data, thus generating data
indistinguishable from the training set and compromising the
privacy of users. For example, the work of [3] reviews risks
of leaking training data in image and text generation models.

To protect the privacy of training data, a mathematically
rigorous framework for privacy titled differential privacy
(DP [5]) has gained interest in recent years. Differentially
private stochastic gradient descent (DP-SGD [1]) is a mod-
ification of stochastic gradient descent (SGD) that offers
privacy guarantees by introducing gradient clipping and noise
injection. While DP guarantees strong privacy protection, it
often comes at the cost of slower convergence and degraded
model utility due to the bias induced by clipping and the
noise injection. This paper will analyze the convergence rates
of various DP-SGD methods under different noise injection
schemes and dataset conditions. We explore how gradient
clipping and noise scaling affect model performance.

Since the advent of DP-SGD, its convergence analysis has
been of interest to both the machine learning and control
communities. Recent literature has focused on the optimiza-
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tion and generalization trade-offs introduced by differential
privacy, but not on its almost-sure stability. For example, the
work of [6] provides convergence analysis on a modified DP-
SGD that replaces gradient clipping with an affine function
of the gradient of the objective function. The authors of
[15] extend the analysis to momentum-based variants and
show that the additive Gaussian noise used for privacy can
dominate the second-moment estimates in adaptive methods
like Adam, effectively neutralizing their curvature adaptation
and creating severe ill-conditioning under heavy-tailed data
distributions. They demonstrate that bias-corrected DP-Adam
(DP-AdamBC) mitigates this issue by subtracting the vari-
ance of the DP noise, improving convergence on imbalanced
datasets. The comprehensive work of [9] derives convergence
rates of SGD with clipping in deterministic and stochastic
settings. Lastly, DP has also been studied in distributed
optimization settings [7], symbolic systems [2], and multi-
agent systems [8].

Overall, most existing analyses provide convergence guar-
antees only in expectation or with high probability, leaving
open the question of whether individual trajectories stabilize.
This gap is critical, since practical deployments of DP-SGD
often train for many epochs under noisy, biased gradient
updates introduced by clipping and Gaussian perturbation.
Our paper builds upon these works by providing almost sure
convergence guarantees for DP-SGD in convex and non-
convex settings. We approach this by proving that a weighted
average of the norm of the gradient of the objective function
converges almost surely, and therefore that the best iterate
converges. We extend our analysis further to variants of SGD
that include momentum, where we also provide almost sure
convergence guarantees of the last iterates.

II. PRELIMINARIES AND ASSUMPTIONS

We provide a formal definitions of DP and SGD, and intro-
duce some assumptions commonly used in the convergence
analysis of SGD [10], [4].

Definition 1 (Differential Privacy (DP) [5]): A randomized
mechanism M : D → R with domain D and range R
satisfies (ε,δ ) differential privacy, where ε > 0,δ > 0, if for
any datasets d,d′ ⊂ D differing by at most one entry, and
for any subset of outputs S ⊂ R, it holds that

P(M (d) ∈ S)≤ eε P(M (d′) ∈ S)+δ . (1)

Problem statement: We are interested in solving the fol-



lowing unconstrained minimization problem

min
x∈Rd

f (x), (2)

where f : Rd → R, using stochastic gradient methods that
satisfy (ε,δ )-DP. Let f ∗ be the true minimum. In convex
settings, we want to prove that f (xt)− f ∗ → 0 as t → ∞. In
non-convex settings, we want to prove that ∇ f (xt) → 0 as
t → ∞.

Definition 2 (Stochastic Gradient Descent (SGD)): The it-
eration of SGD is given by

xt+1 = xt −αtgt , (3)

where gt = ∇ f (x;ξt) is the stochastic gradient at xt with a
random process ξt and αt is a step size. Throughout this
paper, we denote ∇ f (xt) := E[gt ] as the expectation of the
stochastic gradient over all ξt .

Definition 3 (Differentially Private SGD (DP-SGD) [1]):
DP-SGD is a modification of SGD, where gradients are
clipped and noise is added to the clipped gradients.

xt+1 = xt −αtgDP
t , (4)

where the differentially private stochastic gradient gDP
t is

given by
gDP

t = clipq(∇ f (xt ;ξt))+qζt , (5)

where the clipq function is defined for q > 0 by

clipq(∇ f (xt ;ξt)) = min
(

1,
q

∥∇ f (xt ;ξt)∥

)
∇ f (xt ;ξt), (6)

where ζt ∼ N (0,σ2
DPI), and ∥ · ∥ denotes the 2-norm.

Remark 1: DP-SGD can be adapted to other stochastic gra-
dient methods such as stochastic heavy ball and stochastic
Nesterov accelerated gradient. A DP-SGD update satisfies
(ε,δ )-DP if σ2

DP and q satisfy σ2
DP > 2log(1.25/δ )q2/ε2.

Based on the formulation of DP-SGD, we also introduce the
notion of clipping probability.

Definition 4 (Clipping Probability): Define the process ηt
as the clipping probability

ηt = P(∥∇ f (xt ,ξt)∥> q|xt). (7)

We make the following assumptions that are commonly used
in the SGD literature [12].

Assumption 1 (L-smoothness): f is bounded from below by
f ∗ := infx∈Rd f (x) and its gradient ∇ f is L-Lipschitz i.e.
∥∇ f (x)−∇ f (y)∥ ≤ L∥x−y∥, for all x,y ∈ Rd .

Assumption 2 (µ-strongly convex): There exists a positive
constant µ > 0 such that

f (y)≥ f (x)+ ⟨∇ f (x),y−x⟩+ µ

2
∥y−x∥2, (8)

for all x,y∈Rd A consequence of f being µ-strongly convex
is that

1
2µ

∥∇ f (x)∥2 ≥ f (x)− f ∗. (9)

Assumption 3 (Directional Invariance): There exists a con-
stant D > 0 such that

E
[
⟨∇ f (xt),

∇ f (xt ;ξ )

∥∇ f (xt ;ξ )∥
⟩ | xt

]
≥ D∥∇ f (xt)∥ (10)

holds whenever ∇ f (xt) ̸= 0.

Remark 2: This assumption essentially states that the direc-
tion of ∇ f (x;ξ ) is preserved if we normalize it, and that the
distribution of ∇ f (x;ξ ) is not extremely skewed.

III. BACKGROUND AND LEMMAS ON
SUPERMARTINGALES

The analysis in this paper follows from the following result
derived in [14]. From this section onward, we use the
shorthand notation Et [·] := E[·|xt ].

Proposition 1: Let {Xt}, {Yt}, and {Zt} be three sequences
of random variables that are adapted to a filtration {Ft}.
Let {γt} be a sequence of nonnegative real numbers such
that ∏

∞
t=1(1+γt)< ∞. Suppose that the following conditions

hold:

1) Xt ,Yt ,Zt are nonnegative for all t ≥ 1.

2) E[Yt+1|Ft ]≤ (1+ γt)Yt −Xt +Zt for all t ≥ 1.

3) ∑
∞
t=1 Zt < ∞ holds almost surely.

Then, we have
∞

∑
t=1

Xt < ∞ almost surely, (11)

and Yt converges almost surely.

The following result from [10] is used for convergence
results in non-convex settings.

Lemma 1 (Lemma 2 of [10]): Let {Xt} be a sequence of
nonnegative real numbers and {αt} be a decreasing sequence
of positive real numbers such that the following conditions
hold:

∞

∑
t=1

αtXt < ∞,
∞

∑
t=1

αt

∑
t−1
i=1 αi

= ∞. (12)

Then,

min
1≤i≤t

Xi = o

(
1

∑
t−1
i=1 αi

)
. (13)

We derive some properties of the differentially private
stochastic gradient that aids in our core theory.

Proposition 2: For all xt and ξt ,

Et∥gDP
t ∥2 ≤ q2 +q2dσ

2
DP. (14)

Furthermore, if Assumption 3 holds, then

−Et [⟨∇ f (xt),gDP
t ⟩]≤− (1−ηt)∥∇ f (xt)∥2 −Dηtq∥∇ f (xt)∥.

(15)



Proof: We first expand Et∥gDP
t ∥2:

Et∥gDP
t ∥2 = Et⟨clipq(∇ f (xt ;ξt))+qζt ,clipq(∇ f (xt ;ξt))+qζt⟩.

Since ξt and ζt are independent, we can separate the terms:

Et∥gDP
t ∥2 = Et∥clipq(∇ f (xt ;ξt))∥2 +Et∥qζt∥2

+2Et⟨clipq(∇ f (xt ;ξt)),qζt⟩
= Et∥clipq(∇ f (xt ;ξt))∥2 +q2dσ

2
DP +0

≤ q2 +q2dσ
2
DP,

where we exploit that ∥clipq(·)∥ ≤ q for any vector. If
Assumption 3 holds, then

−Et [⟨∇ f (xt),gDP
t ⟩] =− (1−ηt)∥∇ f (xt)∥2

−ηtqEt [⟨∇ f (xt),
∇ f (xt ;ξt )
∥∇ f (x;ξt )∥ ⟩]

≤− (1−ηt)∥∇ f (xt)∥2 −Dηtq∥∇ f (xt)∥.

IV. ALMOST SURE CONVERGENCE RATE ANALYSIS
WITH PRIVACY GUARANTEES

In this section, we derive convergence rates for three dif-
ferentially private stochastic gradient methods. we use the
following notation:

Φt(x) := (1−ηt)∥∇ f (x)∥2 +Dηtq∥∇ f (x)∥, (16)

Φ
µ

t (x) := (1−ηt)(2µ( f (x)− f ∗))+Dηtq
√

2µ( f (x)− f ∗).
(17)

If Assumption 2 holds, then Φ
µ

t (x) ≤ Φt(x) as 2µ( f (x)−
f ∗)≤ ∥∇ f (x)∥2.

A. Stochastic Gradient Descent

The iteration of DP-SGD is given in Definition 3.

Theorem 1 (Convergence of DP-SGD): Consider the iter-
ates of DP-SGD. Let ηt be the clipping probability defined
in Definition 4. If Assumptions 1, 3 hold and αt = Θ( 1

t1−θ
)

for some θ ∈ (0, 1
2 ), then

min
1≤i≤t

Φi(xi) = o
(( t−1

∑
i=1

αi
)−1
)

(18)

almost surely. Furthermore, if Assumption 2 holds, then

min
1≤i≤t

Φ
µ

i (xi) = o
(( t−1

∑
i=1

αi
)−1
)

(19)

Proof: By Assumption 1, we have

f (xt+1)≤ f (xt)−αt⟨∇ f (xt),gDP
t ⟩+ Lα2

t

2
∥gDP

t ∥2.

Taking the expectation Et [·] of both sides gives

Et [ f (xt+1)− f ∗]≤ f (xt)− f ∗−αtEt [⟨∇ f (xt),gDP
t ⟩]

+
Lα2

t

2
Et∥gDP

t ∥2.

By Proposition 2,

Et∥gDP
t ∥2 ≤ q2 +q2dσ

2
DP, (20)

−Et [⟨∇ f (xt),gDP
t ⟩]≤−Φt(xt). (21)

Plugging these terms simplifies the expression to

Et [ f (xt+1)− f ∗]≤ f (xt)− f ∗−αtΦt(xt)

+
Lα2

t

2
q2(1+dσ

2
DP). (22)

Non-Convex Case. By Proposition 1, equation (22) gives
∞

∑
t=1

αtΦt(xt)< ∞.

Thus from Lemma 1,

min
1≤i≤t

Φi(xi) = o
(( t−1

∑
i=1

αi
)−1
)
.

Strongly Convex Case. From strong convexity:

∥∇ f (xt)∥2 ≥ 2µ( f (xt)− f ∗).

equation (22) simplifies to

Et [ f (xt+1)− f ∗]≤(1−2αt(1−ηt)µ)( f (xt)− f ∗)

−αtDηtq∥∇ f (xt)∥+
Lα2

t

2
q2(1+dσ

2
DP)

≤(1−2αt(1−ηt)µ)( f (xt)− f ∗)

−αtDηtq
√

2µ( f (xt)− f ∗)

+
Lα2

t

2
q2(1+dσ

2
DP).

By Proposition 1, we conclude that
∞

∑
t=1

αt [(1−ηt)(2µ( f (xt)− f ∗))+Dηtq
√

2µ( f (xt)− f ∗)]<∞,

and therefore from Lemma 1,

min
1≤i≤t

Φ
µ

i (xi) = o
(( t−1

∑
i=1

αi
)−1
)
,

which concludes the proof.

B. Stochastic Heavy-Ball Method

The iteration of the differentially private stochastic heavy-
ball (DP-SHB) method is given by

xt+1 = xt −αtgDP
t +β (xt −xt−1), (23)

where β ∈ [0,1) is the weight given to the momentum
component. To simplify our analysis, we express the DP-
SHB iteration as a system of two variables. Define

zt = xt +
β

1−β
vt , vt = xt −xt−1. (24)

The iteration of SHB can be rewritten as

vt+1 = βvt −αgDP
t , zt+1 = zt −

αt

1−β
gDP

t . (25)

This update rule is derived in [11].



Theorem 2 (Convergence of DP-SHB): Let {xt} be the iter-
ates of DP-SHB. Let ηt be the clipping probability defined
in Definition 4. Define the differentially private stochastic
gradient as in equation (4). If Assumptions 1, 3 hold and
αt = Θ( 1

t1−θ
) for some θ ∈ (0, 1

2 ), then

min
1≤i≤t

Φi(xi) = o
(( t−1

∑
i=1

αi
)−1
)

(26)

almost surely. Furthermore, if Assumption 2 holds, then

min
1≤i≤t

Φ
µ

i (xi) = o
(( t−1

∑
i=1

αi
)−1
)

(27)

Proof: Define the energy function

Yt := f (zt)− f ∗+ c∥vt∥2.

For a constant c > 0. Moreover,

∥vt+1∥2 = β
2∥vt∥2 +α

2
t ∥gDP

t ∥2 −2αtβ ⟨vt ,gDP
t ⟩.

Taking Et [·] of both sides gives

Et∥vt+1∥2 ≤ β
2∥vt∥2 +α

2
t Et∥gDP

t ∥2 −2αtβEt⟨vt ,gDP
t ⟩.

Using Young’s inequality and Proposition 2, we introduce a
constant c1 > 0 such that

Et∥vt+1∥2 ≤ β
2∥vt∥2 +α

2
t q2(1+dσ

2
DP) (28)

+ c1∥vt∥2 + α2
t β 2

c1
Et∥gDP

t ∥2

≤ (β 2 + c1)∥vt∥2 +α
2
t q2(1+ β 2

c1
)(1+dσ

2
DP).

(29)

By Assumption 1,

f (zt+1)≤ f (zt)− αt
1−β

⟨∇ f (zt),gDP
t ⟩+ Lα2

t
2(1−β )2 ∥gDP

t ∥2.

Taking Et [·] of both sides gives

Et f (zt+1)≤ f (zt)− αt
1−β

Et⟨∇ f (zt),gDP
t ⟩+ Lα2

t
2(1−β )2 Et∥gDP

t ∥2.

(30)

To bound Et⟨∇ f (zt),gDP
t ⟩, we can expand it:

−Et⟨∇ f (zt),gDP
t ⟩

=−Et⟨∇ f (xt),gDP
t ⟩−Et⟨∇ f (zt)−∇ f (xt),gDP

t ⟩
≤ −Φt(xt)+∥∇ f (zt)−∇ f (xt)∥∥EtgDP

t ∥

≤ −Φt(xt)+Lq
√

1+dσ2
DP∥zt −xt∥

≤ −Φt(xt)+
Lqβ

1−β

√
1+dσ2

DP∥vt∥.

Letting K := Lqβ

1−β

√
1+dσ2

DP, equation (30) simplifies to

Et f (zt+1)≤ f (zt)− αt
1−β

Φt(xt)+
αt

1−β
K∥vt∥+ K2

2L α
2
t .

Finally, we control the extra ∥vt∥ term using Young’s in-
equality by introducing a new constant c2 > 0 such that

αt
1−β

K∥vt∥ ≤ c2(1−β )
2 ∥vt∥2 + K2

2c2(1−β )3 α
2
t .

Combining with equation (28), we can now express the
energy function Yt as a supermartingale

Et [ f (zt+1)− f ∗+ c∥vt+1∥2]

≤ f (zt)− f ∗− αt
1−β

Φt(xt)+( c2(1−β )
2 + cβ

2 + cc1)∥vt∥2

+α
2
t [

K2

2L +q2c(1+ β 2

c1
)(1+dσ

2
DP)]. (31)

We can choose positive values for c,c1, and c2 carefully such
that c = c2(1−β )

2 + cβ 2 + cc1, for example, c1 = 1−β 2

2 , c =
c2

1+β
. And let c3 be the coefficient of α2

t for simplification.
This yields the clean recursion

E[Yt+1]≤ Yt − αt
1−β

Φt(xt)+ c3α
2
t . (32)

Non-Convex Case. Summing the recursion and applying
Proposition 1 give

∞

∑
t=1

αt

1−β
Φt(xt)< ∞,

which by Lemma 1 implies

min
1≤i≤t

Φi(xi) = o
(( t−1

∑
i=1

αi
)−1
)
, (33)

almost surely.

Strongly convex case. If f is µ-strongly convex, then
∥∇ f (xt)∥2 ≥ 2µ( f (xt)− f ∗). Plugging this yields

min
1≤i≤t

Φ
µ

i (xi) = o
(( t−1

∑
i=1

αi
)−1
)

(34)

This completes the proof.

C. Stochastic Nesterov’s Accelerated Gradient

The iteration of the differentially private stochastic Nes-
terov’s accelerated gradient (DP-NAG) is given by

yt+1 = xt −αtgDP
t , (35)

xt+1 = yt +β (xt −xt−1), (36)

where β ∈ [0,1) is the weight given to the momentum
component.

Theorem 3 (Convergence of DP-NAG): Let {xt} be the iter-
ates of DP-NAG. Let ηt be the clipping probability defined
in Definition 4. Define the differentially private stochastic
gradient as in equation (4). If Assumptions 1, 3 hold and
αt = Θ( 1

t1−θ
) for some θ ∈ (0, 1

2 ), then

min
1≤i≤t

Φi(xi) = o
(( t−1

∑
i=1

αi
)−1
)

(37)

almost surely. Furthermore, if Assumption 2 holds, then

min
1≤i≤t

Φ
µ

i (xi) = o
(( t−1

∑
i=1

αi
)−1
)
. (38)



Proof: Define vt and zt as in equation (24). The
iteration of DP-NAG can be rewritten as

vt+1 = βvt −βαtgDP
t , zt+1 = zt − αt

1−β
gDP

t . (39)

The proof is identical to that of Theorem 2 with

∥vt+1∥2 = β
2[∥vt∥2 +α

2
t ∥gDP

t ∥2 −2αt⟨vt ,gDP
t ⟩].

V. LAST-ITERATE CONVERGENCE ANALYSIS

The convergence analysis results above show that the “best”
iterate converges to zero almost surely in the strongly convex
and non-convex case. To extend the almost sure convergence
guarantee from best-iterate results to the last iterate, we need
a device that controls oscillations of the gradient norm across
iterations. Even if ∑t αt∥∇ f (xt)∥2 → 0, this condition alone
does not imply that ∇ f (xt)→ 0 because the sequence could
fluctuate indefinitely. The key tool to overcome this difficulty
is a lemma of [13], which ensures that if the weighted sum
of squared gradients is finite and the gradient sequence does
not vary too quickly, then the gradients themselves converge
to zero. We restate a suitable version below.

Lemma 2 (Lemma 1 of [13]): Let {bt} and {αt} be two
nonnegative sequences and {wt} be a sequence of vectors.
Assume ∑

∞
t=1 αtb

p
t < ∞ and ∑

∞
t=1 αt = ∞, where p ≥ 1.

Furthermore, assume that there exists some L > 0 such that

|bt+τ −bt | ≤ L(
t+τ−1

∑
i=t

αibi +∥
t+τ−1

∑
i=t

αiwi∥),

where wt is such that ∑
∞
t=1 αtwt converges. Then bt converges

to 0. See also Lemma 10 of [11] for the case p > 0.

Lemma 2 provides a general criterion for establishing last-
iterate convergence: it reduces the problem to showing that
the cumulative bias and noise terms introduced by DP-
SGD induced by clipping and Gaussian perturbations form
a convergent series. We verify this condition under our
assumptions by combining the supermartingale recursion
established in Theorem 2 with additional bias control for
the clipped gradient. This allows us to use Lemma 2 and
conclude that the last-iterate gradients vanish almost surely.
The formal statement is given in Theorem 4.

Theorem 4: Consider the iterates of DP-SHB and DP-NAG.
Let Assumptions 1 and 3 hold, and assume q ≥ 1. Let the
step size {αt} satisfy ∑

∞
t=1 αt = ∞,∑∞

t=1 α2
t < ∞. Then we

have ∇ f (xt)→ 0 almost surely as t → ∞.

Proof: We revisit the convergence proof for DP-SHB.

By L-smoothness of f ,

Et
[

f (zt+1)
]
≤ f (zt)− αt

1−β
Et
[
⟨∇ f (zt),gDP

t ⟩
]

+ L
2

(
αt

1−β

)2
Et
[
∥gDP

t ∥2]
≤ f (zt)− αt

1−β
∥∇ f (zt)∥2

− αt
1−β

Et
[
⟨∇ f (zt),gDP

t −∇ f (zt)⟩
]

+ L
2

(
αt

1−β

)2
q2(1+dσ

2
DP).

Using the Cauchy-Schwarz inequality,

−Et
[
⟨∇ f (zt),gDP

t −∇ f (zt)⟩
]

≤ ∥∇ f (zt)∥∥EtgDP
t −∇ f (zt)∥

≤ ∥∇ f (zt)∥[∥EtgDP
t − clipq(∇ f (zt))∥

+∥clipq(∇ f (zt))−∇ f (zt)∥]
≤ ∥∇ f (zt)∥[q∥xt − zt∥+max(∥∇ f (zt)∥−q,0)]

≤ ∥∇ f (zt)∥[ qLβ

1−β
∥vt∥+max(∥∇ f (zt)∥−q,0)],

(40)

where ∥EtgDP
t − clipq(∇ f (zt))∥ ≤ q∥xt − zt∥ comes from

exploiting the q-Lipschitz property of clipq(·). Combining
with equation (28), we have

Et
[

f (zt+1)− f ∗+∥vt+1∥2]
≤ f (zt)− f ∗− αt

1−β
min(∥∇ f (zt)∥2,q∥∇ f (zt)∥)

+ αt
1−β

∥∇ f (zt)∥ Lβ

1−β
∥vt∥+ L

2

(
αt

1−β

)2
q2(1+dσ

2
DP)

+(β 2 + c1)∥vt∥2 +α
2
t q2(1+ β 2

c1
)(1+dσ

2
DP)

≤ f (zt)− f ∗− αt
1−β

min(∥∇ f (zt)∥2,q∥∇ f (zt)∥)

+ α2
t L2β 2

c4(1−β )4 ∥∇ f (zt)∥2 +(β 2 + c1 + c4)∥vt∥2 +α
2
t C2,

where c1 > 0 comes from using Young’s inequality, and C2
is the coefficient of α2

t . Finally, for sufficiently large t, there
exists a positive constant c5 such that

− αt
1−β

+ α2
t L2β 2

c4(1−β )4 ≤− c5
1−β

αt .

This simplifies our bound to

Et
[

f (zt+1)− f ∗+∥vt+1∥2]
≤ f (zt)− f ∗− αt

1−β
min((1+ c5)∥∇ f (zt)∥2,q∥∇ f (zt)∥)

+(β 2 + c1 + c4)∥vt∥2 +α
2
t C2.

By Proposition 1, we conclude that
∞

∑
t=1

αt min((1+ c5)∥∇ f (zt)∥2,q∥∇ f (zt)∥)< ∞, (41)

almost surely. Furthermore, with a careful choice of c1 and
c4 such that β 2+c1+c4 < 1, by Proposition 1, we conclude
that

∞

∑
t=1

αt∥vt∥2 < ∞.

For the next part of the proof, we want to show that the
inequality in Lemma 2 holds. Define the ”error” sequence

wt := gDP
t −∇ f (zt) and α

′
t := αt

1−β
.



By zt+1 = zt −α ′
t (∇ f (zt)+wt). Since ∇ f is L-Lipschitz, for

any τ ≥ 1,∣∣∥∇ f (zt+τ)∥−∥∇ f (zt)∥
∣∣

≤
∥∥∇ f (zt+τ)−∇ f (zt)

∥∥
≤ L
∥∥∥zt+τ − zt

∥∥∥
≤ L
∥∥∥ t+τ−1

∑
i=t

α
′
i
(
∇ f (zi)+wi

)∥∥∥
≤ L

t+τ−1

∑
i=t

α
′
i∥∇ f (zi)∥+L

∥∥∥ t+τ−1

∑
i=t

α
′
i wi

∥∥∥.
Therefore, setting bt := ∥∇ f (zt)∥,

|bt+τ −bt | ≤ L
t+τ−1

∑
i=t

α
′
i bi +L

∥∥∥ t+τ−1

∑
i=t

α
′
i wi

∥∥∥. (42)

We first show ∑t α ′
t b

2
t <∞. From equation (32), the sequence

∑t α ′
t Φt(xt) is finite. Using ∥zt − xt∥ → 0, L-smoothness

implies ∥∇ f (zt)∥2 ≤ 2∥∇ f (xt)∥2 +2L2∥zt −xt∥2. Thus

∑
t

α
′
t∥∇ f (zt)∥2 ≤ 2∑

t
α
′
t∥∇ f (xt)∥2+

2L2β 2

(1−β )3 ∑
t

αt∥vt∥2 <∞.

Next, we show ∑α ′
t wt converges almost surely. Decompose

wt =
(
clipq(∇ f (xt ;ξt))−Et [clipq(∇ f (xt ;ξt))]

)︸ ︷︷ ︸
=:Ut

+Et [clipq(∇ f (xt ;ξt))]−∇ f (zt)︸ ︷︷ ︸
=:Tt

+ qζt︸︷︷︸
=:Gt

.

Here Ut is a martingale difference with Et∥Ut∥2 ≤ q2 and Gt
is zero-mean Gaussian with variance q2σ2

DPI. Hence ∑t α ′
tUt

and ∑t α ′
t Gt converge almost surely due to being martingales

bounded in L 2 [16, Theorem 12.1].

Finally, the transfer term ∑t α ′
t Tt expands to

∑t α ′
t

qLβ

1−β
∥vt∥ + max(∥∇ f (zt)∥ − q,0) as shown in

equation (40), and ∑t αt∥vt∥ < ∞. If q ≥ 1, then
max(∥∇ f (zt)∥ − q,0) ≤ min(∥∇ f (zt)∥2,q∥∇ f (zt)∥).
And the convergence of ∑t α ′

t min(∥∇ f (zt)∥2,q∥∇ f (zt)∥)
follows by equation (41).

With (i) and (ii), Lemma 2 with p = 2, bt = ∥∇ f (zt)∥, α ′
t =

αt/(1−β ), and (42) implies ∥∇ f (zt)∥ → 0, almost surely.
For DP-NAG, define yt = xt +β (xt −xt−1) (the look-ahead
point) and use the update xt+1 = yt −αtgDP

t (yt). The same
proof applies with zt replaced by yt and α ′

t = αt/(1−β ).

Remark 3: Almost sure convergence of f (xt) trivially fol-
lows if f is µ-strongly convex as µ( f (xt) − f ∗) ≤
1
2∥∇ f (xt)∥2.

VI. CONCLUSION

In this paper, we established the first almost sure conver-
gence guarantees for differentially private stochastic gradient
descent (DP-SGD) and its momentum variants, including

DP-SHB and DP-NAG. Our analysis adapts supermartingale
techniques to handle the combined challenges of gradient
clipping and Gaussian noise injection, which break the
unbiasedness and smooth descent properties that underlie
classical SGD proofs. We showed that, under standard as-
sumptions, the iterates converge almost surely to stationary
points in the non-convex setting and to the global minimizer
in the strongly convex setting. Our results provide pathwise
convergence, ensuring that individual runs of DP-SGD sta-
bilize rather than merely converging in expectation. This
strengthens the theoretical foundation for deploying DP-SGD
in practice, where guarantees for single trajectories are often
more relevant than averaged behaviors.

Several directions remain open. Our analysis provides almost
sure convergence guarantees regardless of the choices of
the clipping parameter q or the variance of the injected
noise σ2

DP. However, increasing either of these parameters
will naturally slow down the convergence rate in practice.
Deriving convergence rates that depend on these parameters
will be an interesting area for future work.
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