
Bridging Physics-Informed Neural Networks with 
Reinforcement Learning: Hamilton-Jacobi-

Bellman Proximal Policy Optimization (HJBPPO)

This paper introduces the Hamilton-Jacobi-Bellman Proximal Policy 

Optimization (HJBPPO) algorithm into reinforcement learning. The 

Hamilton-Jacobi-Bellman (HJB) equation is used in control theory to 

evaluate the optimality of the value function.

Our work combines the HJB equation with reinforcement learning in 

continuous state and action spaces to improve the training of the value 

network. We treat the value network as a Physics-Informed Neural Network 

(PINN) to solve for the HJB equation by computing its derivatives with 

respect to its inputs exactly. The Proximal Policy Optimization (PPO)-

Clipped algorithm is improvised with this implementation as it uses a value 

network to compute the objective function for its policy network.

The HJBPPO algorithm shows an improved performance compared to PPO 

on the MuJoCo environments.
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Consider a controlled dynamical system modeled by the following 
equation:

𝑥̇ = 𝑓 𝑥, 𝑢 , 𝑥(𝑡!) = 𝑥!

In control theory, the optimal value function 𝑉∗(𝑥) is useful towards finding 
a solution to control problems:

𝑉∗ 𝑡 = sup
#
.
$!

%
𝛾$𝑅(𝑥(𝜏; 𝑡!, 𝑥!, 𝑢(⋅)), 𝑢(𝜏))𝑑𝜏

Where 𝑅 𝑥, 𝜎  is the reward function and 𝛾 is the discount factor.

Theorem 2.1. A function 𝑉(𝑥) is the optimal value function if and only if:

1. 𝑉 ∈ 𝐶& ℝ'  and 𝑉 satisfies the Hamilton-Jacobi-Bellman (HJB) Equation
𝑉 𝑥 ln 𝛾 + 𝑠𝑢𝑝#∈	* 𝑅 𝑥, 𝑢 + ∇+𝑉, 𝑥 𝑓 𝑥, 𝜎 = 0

2. For all 𝑥 ∈ ℝ', there exists a controller 𝑢∗ ⋅  such that:
𝑅 𝑥, 𝑢∗ 𝑥 + ∇+𝑉, 𝑥 𝑓 𝑥, 𝑢∗ 𝑥 = sup

-#
𝐿 𝑥, A𝑢 𝑥 + ∇+𝑉, 𝑥 𝑓 𝑥, A𝑢 𝑥

The HJB equation
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1. Initiate policy network parameter 𝜃 and value network parameter 𝜙
2. Run action selection as given earlier for 𝑇 timesteps and observe 

samples { 𝑠$, 𝑎$, 𝑅$, 𝑠 $.& }$/&,

3. Compute the advantage 𝐴$ = 𝛿𝑡 + 𝛾𝜆 𝛿$.& +⋯+ 𝛾𝜆 ,0$0&𝛿,0& where 
𝛿 = 𝑅$ + 𝛾𝑉1 𝑠$.& − 𝑉1 𝑠$ , 𝛾: Discount factor (≈ 0.99) and 𝜆: Smoothing 
factor (≈ 0.95)

4. Compute 𝑟$ 𝜃 = 2" 𝑎$ 𝑠$
2"#$% 𝑎$ 𝑠$

5. Compute the objective function of the policy network: 𝐿 𝜃 =
&
,
∑$/!,0&min 𝑟$ 𝜃 𝐴$, 𝑐𝑙𝑖𝑝 𝑟$ 𝜃 , 1 − 𝜖, 1 + 𝜖 𝐴$ where 𝜀: clipping parameter 

(≈ 0.2)
6. Update 𝜃 ← 𝜃 − 𝛼&∇1 𝐿(𝜃)
7. Compute the value network loss as: 𝐽 𝜙 = 0.5𝑀𝑆𝐸# + 𝜆345𝑀𝑆𝐸6
8. Update 𝜙 ← 𝜙 − 𝛼7∇1 𝐽(𝜙)
9. Run steps 2-5 for multiple iterations
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Results

Derived from the HJB equation:

b𝑀𝑆𝐸6 =
1
𝑇c
$/!

,0&

𝑉 𝑥$ ln 𝛾 + 𝑅 𝑥$, 𝑎$ + ∇+𝑉 𝑥$ ,𝑓 𝑥$, 𝑎$
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We compute ∇+𝑉 𝑥$ using auto-differentiation. Approximate 𝑓 𝑥$, 𝑎$ using 
finite differences.

𝑀𝑆𝐸6 =
1
𝑇
c
$/!

,0&

𝑉 𝑥$ ln 𝛾 + 𝑅 𝑥$, 𝑎$ + ∇+𝑉 𝑥$ , 𝑥$.& − 𝑥$
Δ𝑡
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Loss function:
𝐽 𝜙 = 0.5𝑀𝑆𝐸# + 𝜆345𝑀𝑆𝐸6

Where 𝑀𝑆𝐸# is derived from the discrete-time Bellman equation

𝑀𝑆𝐸# =
1
𝑇
c
$/!

,0&

𝑉 𝑥$ − 𝑅 𝑥$, 𝑎$ + 𝛾𝑉 𝑥$.&
7

New loss functions for the value network


