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Abstract— This paper introduces harmonic control Lyapunov
barrier functions (harmonic CBLF) that aid in constrained con-
trol problems such as reach-avoid problems. Harmonic CBLFs
exploit the maximum principle that harmonic functions satisfy
to encode the properties of control Lyapunov barrier functions
(CBLFs). As a result, they can be initiated at the start of an
experiment rather than trained based on sample trajectories.
The control inputs are selected to maximize the inner product
of the system dynamics with the steepest descent direction of
the harmonic CBLF. Numerical results are presented with three
different systems under two different environments. Harmonic
CBLFs show a significantly low risk of entering unsafe regions
and a high probability of entering the goal region.

I. INTRODUCTION

The objective of constrained optimal control is to design a
control system that optimizes a notion of performance while
satisfying a set of constraints. These constraints are usually
designed to prevent catastrophic events, ensure safety, and
take into multiple objectives with bounds. Furthermore, with
experiments conducted in real life, resetting the environment
if the agent goes outside a domain can be expensive [11].

Reach-avoid problems are a subset of constrained optimal
control problems where a trajectory aims to reach a goal state
while avoiding a set of unsafe states. In recent years, there
has been a growing interest in reach-avoid problems among
the control theory and reinforcement learning community.
Such methods involve learning control Lyapunov functions to
certify reachability and control barrier functions that satisfy
avoidability [9], [4].

In reinforcement learning, agents learn optimal policies
through exploration of the environment with unknown dy-
namics [18]. Constraints are imposed using penalty methods
[10] and lagrangian methods [1]. In these methods, two value
functions are computed to estimate cumulative rewards and
cumulative costs.

The problem with using two certificates or two value
functions is that it leads to conflicts in the control policy
whether to satisfy reachability or avoidability at a given point
in time. To unify the conflicts, [6] combined reachability and
safety into a single certificate called the control Lyapunov
barrier function (CBLF). They also propose the Lyapunov
barrier actor-critic to find a controller that satisfies both
certificates.

Harmonic functions are solutions to the Laplace equation,
which is a second-order linear elliptic partial differential
equation (PDE). They satisfy the maximum principle in
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a compact set, thus making it easier to impose CLBF
constraints. They do not have any critical points other than
saddle points in the interior of their domain, which makes it
easy to derive optimal control strategies.

Harmonic functions have been used in the control lit-
erature to derive potential fields in past works. [12] used
harmonic potential functions with panel methods to build po-
tential fields over a task space. [17] used harmonic functions
with complex variables and conformal mappings to achieve
moving obstacle avoidance. [5] combines harmonic functions
using superposition to derive potential fields.

Safety constraints are grouped into three categories: (a)
level I: constraint satisfaction encouraged, (b) level II: con-
straint satisfaction with high probability, and (c) level III:
constraint satisfaction guaranteed [3]. In this paper, we will
focus on safety level III problems, where an agent must reach
a goal region while avoiding unsafe regions. For example,
the unsafe regions could be regions on a floor that have
holes or pillars. We achieve this by introducing harmonic
control Lyapunov barrier functions (harmonic-CBLFs) that
use Laplace’s equation to encode the properties of control
Lyapunov barrier functions (CBLFs).

Furthermore, Laplace’s equation can be solved using nu-
merical methods such as finite element methods (FEMs)
and do not be trained using neural networks based on
sample trajectories as done in prior work, thus significantly
reducing the computational cost of performing experiments.
To the best of our knowledge, our work is the first to
unify harmonic functions with CBLFs and derive optimal
controllers using gradient-based methods. Our experiments
show a significantly low risk of trajectories entering unsafe
regions.

II. PRELIMINARIES

In this section, we will introduce known definitions and
results of Control Lyapunov Barrier Functions (CBLF) and
harmonic functions.

Let S be a compact subspace of R™ denoting the space of
all admissible states in a control problem. Let Sgoq C S be
an open set denoting the space of states that the controller
aims to reach, and let Sy,s,¢. be a compact subset of S
denoting the space of states the controller aims to avoid.
Define Ssafc = S\{Sgoal U Sunsafe}-

A. Control Lyapunov Barrier Functions

Definition 1: (Control Lyapunov Barrier Function) [6] A
function V' : S — R is a Control Lyapunov Barrier Function
(CLBF) if, for some constant ¢, A > 0:



1) V(s) =0 forall s € Sgou

2) V(s) >0 for all s € S\Sgou

3) V(s) >cforall s € Synsafe

4) V(s) <cforall s € S\Sunsafe

5) There exists a controller 7 such that Ey/ [V (s') =V (s)+
AV (s)] <0 for all ' ~ P(s'|s, w(als))

In this paper, we will let ¢ = 1.

B. Harmonic Functions

Definition 2: (Harmonic Function) [8] A harmonic func-
tion u is a C?-function that satisfies the Laplace equation
Viu =V -Vu=0

In the following theorems, we will introduce properties
of harmonic functions that are considered important work in
the field of elliptic PDEs, differential geometry, and complex
analysis.

Theorem 1: (Mean Value Theorem) [16] If w is harmonic
on a domain S, then w satisfies the mean value property in S.
Furthermore, if x € S and r > 0 are such that B,.(z) C S,
then

fB,,.(x) u(y)dy

This theorem is essential for proving theorems 2 and 3
that provide bounds on harmonic functions.

Theorem 2: (Strong Maximum Principle) [8] If u is har-
monic on a domain S and w has its maximum in S\9S, then
u 1s constant.

Theorem 3: (Weak Maximum Principle) [8] If u €
C?(S) U Ct(dS) is harmonic in a bounded domain S, then

maxu = maxu 2)
kS aS

S
This shows that theorems 2 and 3 can be exploited to
derive a CBLF that achieves its maximum in unsafe regions
and minimum in goal regions.

IIT. PROPOSED METHOD

In this work, we will explore the intersection between
CBLF and harmonic functions. By exploiting the maximum
principle, we can derive a function V' : S — R that satisfies
properties 1-4 for CLBF by imposing boundary conditions
on the CBLF.

Definition 3: (Harmonic CBLF) A function V € C?(S)U
C1(0S) is a harmonic CBLF if it satisfies the following
conditions.

1) V2V(s) =0 for all s € Ssqfe

2) V(s) =0 forall s € Sgoa

3) V(s) =cforall s € 0SUSunsase

In other words, V(s) is a solution to the boundary value
problem given above.

Let us introduce a condition that must be satisfied for the
CBLEF. The following assumption is important as it implies
that for any s € Sgqfc, there exists a continuous path that
connects it to a point in 0Sgq Without touching a point in
Sunsafe

Assumption 1: For all points xo, 1 € Ssafe, there exists a
continuous path x(t) € C[0,T] in Ssqse such that z(0) = xg
and z(T') = ;.

The following theorem provides a sufficient condition to
verify the 5th property of CBLFE.

Theorem 4: Let V be a harmonic CBLF, and let the
dynamics of the deterministic system be & = f(x,u). Under
assumptions 1, the constant A from property 5 of CBLF can
be computed as:

{(f(z,u), -VV(z))
V(x)

A= sup inf At, 3)

TE€Seufe uelU
where U is the set of control inputs and At is the time step
size used for numerical simulation.

Proof: The proof of this is straightforward. The expres-
sion V(z(t + At)) — V(x(t)) + AV (z(t)) <0 for small At
can be written as

0
a‘/(x(t))At + AV (z(t)) <0 “)
Using the following identity by chain rule:
0
SV (1) = (), VV (), )
we can derive equation 3 above. |

Furthermore, a sufficient condition for a system to avoid
Sunsa fe is:

sup inf (f(z,u), VV(z)) <0 (6)

TESsafe uelU

Since Synsafe is a closed set, this means V(z) < ¢ for
all x € Ssqfe. And since %V(x(t)) < 0, this means for all
t € [0, 00), x(t) will never approach a point where V' (z) = ¢,
meaning, it will never approach a point in Syysq e

[19] shows that all critical points in V' (z) are saddle points.
[7] added random noise to parameters while performing
gradient descent and provided guarantees that the algorithm
would converge to a local minimum. [13] shows that gradient
descent with random parameter initialization asymptotically
avoids saddle points. So in this paper, we compare deter-
ministic control inputs with stochastic control inputs to see
which method shows better convergence to Sgoq1.

At every point x € Sy, ¢, the control input is selected as
u = infycp(f(z,u), VV(x)) + z where z is a small noise
sampled from a normal distribution N(0,02) to mitigate
local optima.

The following theorem introduces bounds that must be
imposed on z so that the trajectory avoids unsafe regions.

Theorem 5: The trajectory governed by the ODE & =
f(z,u) will avoid Synsqfe under a noisy controller u + z if
the noise z satisfies

c—V(x)

(Vuf(z,u)VV(z),z) < AL

—(VV(z), f(z,u)),
(N
where At is the step size used in numerical simulation, and
V.uf(z,u) is the Jacobian of f with respect to the control
inputs.
Proof: Consider the first-order expansion of x(t + At)

z(t+ At) = 2 + f(z,u)At + O(At?) 8)



Add some noise z to the control input
r(t+ At) =z + f(2,u+ 2)At + O(At?) )
Applying the first-order expansion of f(x,u + 2)
a(t+At) = z+ f(z,u) At + fu(z,u)" 2At+ O(AL?) (10)

Consider the first-order expansion of V(x(t + At))

V(z(t+ At) =V (z) + (VV, f(x,u) + Vo f (z,u)? 2) At
+ O(A?) (1n

We need to satisfy V(z(t + At)) < ¢
(VV (@), f(z,u) + Vo flz,u)Tz) < C_TV;(‘T) (12)

Expanding and simplifying this expression gives the bounds
in equation 13.

Furthermore, using the Cauchy-Schwarz inequality, a suf-
ficient way to bound z is

1Vl w9V @)zl < @V (@), 1, 0)
13)
|

Numerical solutions in section IV show that in harmonic
CBLFs, the distinction between safe and unsafe regions is
unclear. To make the distinction clearer, we replace the
CBLF as a solution to Laplace’s equation with a solution
to Poisson’s equation V2V = —6 in this paper, meaning
V' is a superharmonic function. However, this method also
poses a risk that V' has local minima in the interior of its
domain [2]. This is undesirable as local minima are harder to
escape compared to saddle points. We will compare harmonic
CBLFs with superharmonic CBLFs with numerical results.

IV. RESULTS

In this section, we will explore two different reach-avoid
environments, one with four small unsafe regions and one
with two big unsafe regions. We will solve these environ-
ments with three different systems: Roomba, DiffDrive, and
CarLikeRobot [15]. The dynamics of each of these systems
are provided in Appendix I along with control inputs that
minimize the expression in equation 6 for any = € Ssqfe.

For every environment and system, we will compute the
harmonic (V2V = 0) and superharmonic (V2V = —6)
CBLF numerically using finite element methods. For both
of the CBLFs, we compute the trajectories of the system
with 1,000 different randomly initialized initial conditions
and count the number of time steps (of size At = 0.1)
it took for the system to reach Sy,q;. We will try this for
deterministic (¢ = 0) and stochastic (¢ = 0.1) controllers
and report the mean time taken to reach the goal (u7), the
standard deviation of the time taken to reach the goal (or),
the number of times the system ends in an unsafe region (not
included in pr,or), and the number of times the system
doesn’t reach Sy after 1,000 time steps (not included in
,MT,CTT)~

A. Problem I

In this problem, we explore an environment that contains
a goal region near the origin and four unsafe regions in the
interior of the domain.

Sgoar = [—0.1,0.1] x [-0.1,0.1] (15)
Sunsafe =05 UC1 UCyUC3 U Cy, (16)

with the subdomains of the unsafe region given by
= [ 0 5, —0. 3] [ 0.5,—0.3] (18)
:[ 0.5,—0.3] x [0.3,0.5] (19)
=[0.3,0.5] x [-0.5,—0.3] (20)
C4—[O305] [0.3,0.5] (21)

Initial conditions are sampled as:

x(0) ~ U[-0.9,—-0.6] U [0.6,0.9], (22)
y(0) ~ U[-0.9,—0.6] U [0.6,0.9] (23)
6(0) ~ U[0, 27] (24)

We derive a harmonic CLBF using finite element methods
using DOLFIN [14]. We used piecewise linear trial functions
and a triangular mesh. The domain has been divided into
5,000 triangular meshes of equal area. In this paper, we will
let ¢ = 1. This numerical solution is plotted in 2D view in
figure 1 and in 3D view in figure 5.
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Fig. 1. Problem I with f =0

Although in theory, the solution should take values less
than 1.0 outside the unsafe region, the distinction is highly
unclear in the numerical solution. To clarify the distinction,
we replace the Laplace equation with the Poisson equation
V2V = f. We plotted the solution with f = —6 in 2D view
in figure 2 and in 3D view in figure 6.



Fig. 2. Problem I with f = —6

This solution shows a better distinction between safe
and unsafe regions, but it shows more points where V' (z)
has a local optimum. Local optima are undesirable as
(f(z,u), VV(x)) = 0 in those points so V(z) is unlikely to
show a significant decrease.

0S5 =[-1,1] x {-1,1} U {-1,1} x [-1,1] (28)

C5 = [-0.5,-0.3] x [-0.5,0.5] (29)

Cs =1[0.3,0.5] x [—0.5,0.5] (30)
Initial conditions are sampled as:

z(0) ~ U[-0.9,—0.6] U [0.6,0.9], (31)

y(0) ~ U[-0.3,0.3] (32)

6(0) ~ U|0, 27] (33)

The numerical solution to the harmonic CBLF for this
problem is plotted in 2D view in figure 3 and in 3D view in
figure 7.

System V2V o ur or unsafe | no reach
Roomba 0 0 97.278 65.607 0 105
Roomba -6 0 58.224 50.388 0 459
Roomba 0 0.1 114.706 | 81.527 0 0
Roomba -6 0.1 139.606 | 180.247 0 185

DiffDrive 0 0 301.403 | 216.495 0 95
DiffDrive -6 0 127.045 | 115.348 0 492
DiftDrive 0 0.1 296.800 | 200.713 810 0
DiffDrive -6 0.1 186.717 | 157.670 709 37
CarLikeRobot 0 0 452.125 | 323.942 0 193
CarLikeRobot -6 0 277.398 | 253.148 0 47
CarLikeRobot 0 0.1 21.200 69.889 0 930
CarLikeRobot -6 0.1 26.887 88.174 0 920
TABLE I

RESULTS FOR PROBLEM I

The numerical results are posted in table I. Roomba
achieves the best results under a harmonic CBLF with a
stochastic control policy as all the trajectories converged to
Sgoar. DiffDrive achieves the best results under a harmonic
CBLF with a deterministic control policy. And CarLikeRobot
achieves the best results under a superharmonic CBLF with
a deterministic policy.

B. Problem II

In this problem, we explore an environment that contains
a goal region near the origin and two unsafe regions in the
interior of the domain.

S= [_171] X [_17 1] (25)
Syoat = [~0.1,0.1] x [~0.1,0.1] (26)
Sunsafe =0Su C5 U Cﬁ, 27

with the subdomains of the unsafe region given by

Fig. 3. Problem II with f =0

To make the distinction between safe and unsafe regions
clearer, we plotted the solution to the Poisson equation with
f = —61n 2D view in figure 4 and in 3D view in figure 8.

Fig. 4. Problem II with f = —6



System V2V o wr or unsafe | no reach
Roomba 0 0 85.600 54.603 12 0
Roomba -6 0 202.568 | 199.603 0 91
Roomba 0 0.1 86.846 | 55.789 9 78 T =wvcosf (34)
Roomba -6 0.1 48.033 21.363 0 880 . .
DiffDrive 0 0 | 258.502 | 168.726 0 55 Y =wvsinf (35)
DiffDrive -6 0 96.077 28.211 0 730 2
DiffDrive 0 0.1 227.905 134.445 831 0 0= W, (36)
DiffDrive -6 0.1 260.545 295.732 982 7
CarLikeRobot 0 0 || 380.014 | 230.751 30 124 where v € [—1,1] and w € [—1, 1] are the control inputs.
CarLikeRobot -6 0 415.246 | 257.179 0 570 e . . .
CarLikeRobot 0 01 || 264435 | 205930 45 042 The minimization problem to equation 6 is:
CarLikeRobot -6 0.1 342.060 | 262.481 0 987
TABLE II

RESULTS FOR PROBLEM II

The numerical results are posted in table II. Roomba
achieves the best results under a superharmonic CBLF with
a deterministic control policy. DiffDrive achieves the best
results under a harmonic CBLF with a deterministic control
policy. And CarLikeRobot achieves the best results under a
harmonic CBLF with a deterministic policy, although it has
30 trajectories converging to Synsq fe and 124 trajectories not
converging to Syoq1. Furthermore, this table shows that deter-
ministic control policies achieve better results than stochastic
control policies and have significantly more trajectories that
do not converge to Sgoql.

Tables I and I show that deterministic policies under su-
perharmonic CBLFs always avoid Synsqfe as expected since
the Poisson equation makes the distinction between safe and
unsafe regions clearer. But it comes with the drawback that
there is a high risk that the trajectory will converge to a
local minimum and not reach Sgq;. Deterministic policies
generally outperform stochastic policies as the noise added to
control inputs comes with the risk that it drives the trajectory
away from the goal or towards an unsafe region. Despite
using control inputs that solve the minimization problem
in equation 6, in many episodes, the trajectory does not
converge to Sgoqi. This is likely due to numerical errors
associated with estimating VV or with solving the system
dynamics.

V. CONCLUSIONS

In this paper, we introduced harmonic CBLFs that exploit
the maximum principle that harmonic functions satisfy to
encode the properties of CBLFs. This paper is the first to
unify harmonic functions with CBLFs for an application
to control theory. We select control inputs that maximize
the inner product of the system dynamics with the steepest
descent direction of the harmonic CBLF. This has been
applied to reach-avoid problems and demonstrated a low
risk of entering unsafe regions while converging to the goal
region.

APPENDIX I: DYNAMICS OF EACH SYSTEM

A. Roomba

The dynamics of the Roomba are as follows:

inf (vecos O, vsin @) (Vi (z,y), Vy(z,y))" (37)

ve[—1,1],we[—1,1]

The infimum is achieved when v maximizes the negative
of the magnitude of the inner product, and w is set to the
direction that maximizes the magnitude of the inner product.

v = —sign(Vy(x,y) cos 0 + V,(z, y) sin ) (38)

w = sign(—V,(z, y) cos§ + V,(z,y) sin §) 39)

These control input pairs are used in computing the results
in tables I and II.

B. DiffDrive

The dynamics of the diff-drive robot are as follows:

&= (ur, —|—uR)gcos9 (40)
§ = (uL—FuR)gsinG 41)
. T

0= (UR*UL)Q*d, (42)

where v, € [-1,1] and ur € [—1,1] are the control
inputs subject to the constraint |uy|+ |ug| < 1.7 = 0.1 and
d=0.1.

The minimization problem to equation 6 is:

((ur, +uR)gc089, (ur, + UR)% sin )

(Vm(l‘,y), Vy(x,y))T

inf
lur|+lur|<1

(43)

The infimum is achieved when u; + ur maximizes the
negative of the magnitude of the inner product, and up —uy,
is set to the direction that maximizes the magnitude of the
inner product.

ug = [sign(—V,(z,y) cos 0 + V, (x,y) sin )

—sign(Vy(z,y) cos 0 + Vy(x,y)sinh)] /2 (44)
up = [ — sign(—Vz(x,y) cos 8 + Vy(z, y) sin )
—sign(Vy(z,y) cos 0 + Vy(x,y)sinh)] /2 (45)



C. CarLikeRobot

The dynamics of the car-like robot are as follows:

T =wvcosf (46)
y =wvsinf 47)
0 = vtan(v)/l (48)
V=, (49)
where v € [—1,1] and w € [—1,1] are the control inputs 000 025 e 0750 100

subject to the constraint |v| < |w|. ] = 0.1. ¢(0) is initialized
to 0. We set [ = 0.1.

The minimization problem to equation 6 is: Fig. 6. Problem [ with f = —6

inf (vcos®,vsind)(Vu(z,y), Vy(z,y))T  (50)

[v]<|w|<1

The infimum is achieved when v maximizes the negative
of the magnitude of the inner product, and € is set to the
direction that maximizes the magnitude of the inner product.

v = —sign(Vy(z,y) cos 0 + V,(x,y)sin0) (351

w = vsign(—V,(z, y) cos 8+ V,(x, y) sin 0) —sign(vp) (52) _ y

APPENDIX II: 3D PLOTS OF HARMONIC CBLFS Fig. 7. Problem II with f =0

0.00 0,250 0.500 0.750 100 0.00 0,250 0.500 0.750 100
I I

Fig. 5. Problem I with f =0 Fig. 8. Problem II with f = —6
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