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Abstract—This paper introduces a Model-based Reinforcement
Learning (MBRL) framework for solving optimal control prob-
lems. We use a Satisfiability Modulo Theories (SMT) solver and
numerical simulations to verify the stability and performance
of the resulting approximate optimal controllers. Leveraging a
structured continuous-time model described in terms of a basis
set, we formulate an infinite-horizon optimal control problem to
optimize a given cost functional. The system’s structure and a
value function parameterized in a quadratic form enable the
analytical computation of parameter update rules. Moreover,
the quadratic form of the value function offers a compact
approach to parameter updates, thereby reducing computational
complexity. We establish the asymptotic stability and optimality
of the resulting control around equilibrium, drawing parallels
with the Linear Quadratic Regulator (LQR). In conjunction with
a system identification unit, the framework can be employed
as an online learning-based algorithm. Hence, we compare the
proposed approach with Proximal Policy Optimization (PPO),
Successive Galerkin Approximation (SGA), and Adaptive Dy-
namic Programming (ADP), three well-known Reinforcement
Learning (RL) and optimal control techniques. The results
demonstrate the advantages of the proposed technique in terms
of computational efficiency and performance.

Index Terms—Model-Based Reinforcement Learning (MBRL),
optimal control, Satisfiability Modulo Theories (SMT) solver,
Hamilton-Jacobi-Bellman (HJB), stability analysis.

I. INTRODUCTION

Model-based Reinforcement Learning (MBRL) techniques
outperform many other machine learning methods in terms
of data efficiency, making them suitable for demanding ap-
plications such as robotics [9]. These techniques demonstrate
optimal behavior even within the first few trials [19], [32].
In fact, learning a deterministic or probabilistic transition
model for predictions saves much more effort than treating any
point in the state-control space individually. For these reasons,
MBRL techniques feature prominently in the continuous-time
control literature[30], [1], [26].

Various MBRL techniques have been proposed over a
period spanning decades[23]. In value function methods such
as those described in[17], [20], which are also known as
approximate/Adaptive Dynamic Programming (ADP), a value
function is used to construct the policy. Value methods to ad-
dress optimal control problems typically require solving the as-
sociated Hamilton-Jacobi-Bellman (HJB) equation. However,
many techniques for solving these equations suffer from the
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curse of dimensionality. To overcome this difficulty, approx-
imate dynamic programming techniques use a model of the
value to find an approximate solution [21]. These techniques
use the Bellman error, which is acquired by exploring the state
space. The model parameters are iteratively estimated using a
gradient-descent or least-squares method. For example, in [16],
a parametric model is used to approximate the value function
and a least-squares minimization technique is used to adjust
the parameters according to the Bellman error.

There exist different approaches in the literature that attempt
to solve the optimal control problem such as, Successive
Galerkin Approximation (SGA) [3] and ADP [14], [17], [20].
Although they demonstrate efficiency, their applicability relies
on the presence of an initial stable controller to run the
algorithms. This impedes the implementations in many cases
where a stabilizing control is not provided for a region of
interest within the state domain.

In [10], a new method for approximating solutions to
optimal control problems for general nonlinear systems is
developed. Like many existing methods, it is underpinned
by Bellman theory [21], [35], [5], [16] , while its formula-
tion differs from prior approaches. Specifically, it presents
an analytical solution to the optimal control problem. This
method thereby eliminates the need to iteratively estimate the
value parameters using techniques such as gradient descent or
least-squares. Moreover, because of Additionally, a quadratic
parametrization of the value function allows the parameters
to be stored in a square matrix, improving the algorithm’s
computational efficiency.

Although Structured Online Learning (SOL) as presented
in [10], performs well in simulations, it lacks stability and
optimality guarantees, while they are essential for real-world
applications. Achieving such provable guarantees has been the
bottleneck of many Reinforcement Learning (RL) techniques.
The present paper fills in this lacuna, and in the process of
doing so reveals connections with Forward-Propagating Ric-
cati Equation (FPRE) techniques for solving Linear Quadratic
Regulator (LQR) problems. In more detail, it can be shown
that in the RL setting, the differential Riccati equation can
be solved in forward time resulting in a similar solution as
LQR. This contrasts with optimal control which is generally
a backward method requiring an exact model of the system.
Using a similar approach, we show that a stabilizing control
in terms of some bases may be obtained by solving a state-
dependent Riccati equation in forward time. Additionally, to
numerically determine whether the controller thus obtained
stabilizes the nonlinear system, we use an Satisfiability Mod-
ulo Theories (SMT) solver. SMT solvers are able to provide
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stability guarantees for nonlinear systems with valid Lya-
punov functions, and the corresponding stabilizing controllers
by converting the Lyapunov conditions into first-order logic
formulae over the state space [8], [36]. We will use this
reliable tool to verify the stability of nonlinear systems with
the obtained approximate optimal controllers and certify the
Lyapunov function candidates. In summary, the focus of this
paper is to introduce an efficient MBRL framework with
rigorous guarantees, which entails the following contributions:

• We show that with the proposed algorithm, Global uni-
form exponential stability (GUES) of the closed-loop
linear systems based on the solutions of the FPRE can
be obtained.

• We present the stability analysis of nonlinear systems
with the learned approximate optimal controllers us-
ing SOL, while the stability guarantees for the closed-
loop systems are further rigorously certified by an SMT
solver.

• We illustrate the effectiveness and advantages of SOL
with detailed comparisons for a set of classic nonlinear
systems with three existing optimal control and RL
techniques.

The rest of this paper is organized as follows. In Section II,
we give the problem formulation and summarize the approxi-
mate optimal control approach from [10]. Section III presents
the stability analysis and numerical verification. Section IV
develops the SOL learning algorithm. In Section V, we present
numerical examples, make comparisons with existing methods,
and draw some qualitative conclusions about their relative
performance.

Notations. We denote n-dimensional Euclidean space by
Rn and a ball of radius r centered at the origin by D̄r.
We further denote by |k| the absolute value of a number
k and by ||x|| the 2-norm of a vector x ∈ Rn. By ∂V

∂x

we mean the gradient of V : IRn → IR, and by ∂Φ
∂x we

mean the Jacobian matrix of Φ : IRn → IRp. A diagonal
square matrix A with elements a1, . . . , an on the diagonal
is shortened as A = diag([a1, . . . , an]). U(a, b) represents a
uniform distribution with the bounds a and b.

II. APPROXIMATE OPTIMAL CONTROL

In this section, we formulate the problem and summarize
the approach presented in [10].

A. Problem Formulation
We consider the nonlinear affine system

ẋ = f(x) + g(x)u, (1)

where x ∈ D ⊂ IRn and u ∈ Ω ⊂ IRm are respectively
the state and the control input. We have f : D → IRn and
g : D → IRn×m and we assume that the functions fi and
gi can be approximated on the domain of interest by a linear
combination of some basis functions ϕj ∈ C1 : D → IR
for j = 1, 2, . . . , p and i = 1, 2, . . . , n. Substituting these
approximations, (1) becomes

ẋ =WΦ+

m∑
j=1

WjΦuj (2)

where W and Wj ∈ IRn×p are matrices of coefficients,
with subscript Wj corresponding to the jth control in-
put. The bases are chosen so that constant and linear el-
ements comprise the first two rows, for example, Φ =[
1 x1 . . . xn ϕn+2(x) . . . ϕp(x)

]T
.

We wish to minimize the cost function

J(t, x0, u) = lim
T→∞

∫ T

0

e−γt
(
xTQx+ uTRu

)
dt, (3)

along the solution through x0 = x(0) where Q ∈ IRn×n

positive definite, γ ≥ 0 the discount factor, and R ∈ IRm×m

a diagonal matrix with only positive values are chosen by
design criteria. When γ > 0, this defines a discounted optimal
control problem. Discounted optimal control problems are
widely used in reinforcement learning to determine the time
horizon considered for minimizing the objective [20]; see for
example the discussion given in [24], [11].

For feedback control u = ω(x(t)), t ∈ [0,∞), the optimal
control is given by ω∗ = argminu(·)∈Γ̄(x0) J(t, x0, u(·))
where Γ̄ is the set of admissible controls.

Without loss of generality, we express the cost (3) in terms
of Φ as

J(t, x0, u) = lim
T→∞

∫ T

0

e−γt
(
ΦT Q̄Φ+ uTRu

)
dt (4)

where Q̄ = diag
(
0, Q,0(p−n−1)×(p−n−1)

)
is a block diagonal

matrix.
The optimal cost to go from (t, x) is defined to be

V̄ (t, x) := minu[t,T ] J(t, x, u), where u[t, T ] is the policy on
time interval [t, T ]. Then, by the Hamiltonian

H = ν(t, x, u) +
∂

∂x
V̄ (t, x)T (WΦ+

m∑
j=1

WjΦuj),

the corresponding HJB equation can be written as

− ∂

∂t
V̄ (t, x) = min

u(·)∈Γ(x0)
H (5)

where ν(t, x, u) is the running cost in (4). Section 5.1.3 of [22]
contains more detail in this regard. Analytical solutions to this
equation are not known, however, [4], [20], [25] have shown
that approximate solutions can be computed by numerical
techniques.

B. Approximate Solution

We follow [10] in presenting an analytical method. For
the discounted problem, we assume that the discounted op-
timal value takes the form V̄ (t, x) = e−γtV where V is
the undiscounted optimal value. Now, we use the following
approximation

V ≈ ΦTPΦ (6)

where P is a symmetric matrix of parameters that captures the
evolution of the learned value parameters over time.

Remark 1: This approximation is justified since V is a pos-
itive function. We can write V as an inner product V = ⟨v, v⟩
for some v : D → IRp1 , where p1 is a positive integer,
with a trivial choice given by v = V 1/2. We now consider
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an approximation v ≈ k1Φ, where k1 ∈ IRp1×p. This yields
V = ⟨v, v⟩ ≈ ⟨k1Φ, k1Φ⟩ = ΦT kT1 k1Φ = ΦTPΦ, where P is
symmetric and positive define.

With this approximation, the Hamiltonian H becomes

H =e−γt(ΦT Q̄Φ+ uTRu)

+ e−γtΦTP
∂Φ

∂x

(
WΦ+

m∑
j=1

WjΦuj

)

+ e−γt

(
ΦTWT +

m∑
j=1

uTj Φ
TWT

j

)
∂Φ

∂x

T

PΦ.

Based on the structure of R, the quadratic term of u is
rewritten in terms of its components, where rj ̸= 0 is the
jth component on the diagonal of R. The minimum of the
Hamiltonian occurs at

∂H

∂uj
= 2rjuj + 2ΦTP

∂Φ

∂x
WjΦ = 0, j = 1, 2, . . . ,m,

(7)

so the jth optimal control is

u∗j = −ΦT r−1
j P

∂Φ

∂x
WjΦ. (8)

By substituting the above and the value function in (5), we
obtain

− ΦT ṖΦ+ γΦTPΦ = ΦT Q̄Φ+

− ΦTP
∂Φ

∂x

( m∑
j=1

WjΦr
−1
j ΦTWT

j

)
∂Φ

∂x

T

PΦ

+ ΦTP
∂Φ

∂x
WΦ+ ΦTWT ∂Φ

∂x

T

PΦ, (9)

where

−Ṗ =Q̄+ P
∂Φ

∂x
W +WT ∂Φ

∂x

T

P − γP

− P ∂Φ
∂x

( m∑
j=1

WjΦr
−1
j ΦTWT

j

)
∂Φ

∂x

T

P. (10)

is a sufficient condition for relation (9) to hold.
The differential equation (10) is propagated in the forward

time similar to [27] by changing dt := −dt. Accordingly, on
the left-hand side, this will result in a sign flip as −Ṗ → Ṗ .
This allows the estimate of the system to be updated on the
fly in an MBRL framework. Moreover, because of the general
case considered in obtaining (10) where Φ includes arbitrary
nonlinear basis functions of the state, state dependency seems
inevitable unlike standard Differential Riccati Equation (DRE)
for linear systems. Hence, (10) is solved along solution tra-
jectories.

Remark 2: This section presented the control technique for
given W and Wj . However, in an identifier-based implemen-
tation, an estimation of these weights can be used, which is
discussed later in the learning algorithm. Further discussions
are given in the appendix section IX.

III. STABILITY AND OPTIMALITY ANALYSIS

In this section, we analyze the stability of the proposed
method and make connections with FPRE for linear systems
[33], [27]. To do this, we formulate the LQR problem for
the linearization of (2). We then show that when close to the
origin, the integration of (10) becomes similar to the forward
propagated solution of the linearized system.

We begin with some conditions on (2). We assume the origin
is an equilibrium point. Accordingly, we construct the bases
Φ = [1 xT Γ(x)T ]T , where Γ includes the rest of the bases
which are nonlinear. Then the system (2) may be written as

ẋ =
[
0 W2 W3

]  1
x

Γ(x)

+
[
Wj1 Wj2 Wj3

]  1
x

Γ(x)

u.
(11)

A. Linear case

Defining Γ1 = ∂Γ(x)
∂x |x=0, the linearization of (11) at an

equilibrium point is

ẋ = Ax+

m∑
j=1

Bjuj (12)

where A =W2 +W3Γ1 , and Bj =Wj1.
Now consider the LQR problem with quadratic cost (3) and

γ = 0 for the linearized system (12). The optimal control is
u = −r−1

j BT S̄x, where S̄ is the solution of the algebraic
Riccati equation

Q+ S̄A+AT S̄ − S̄(
m∑
j=1

Bjr
−1
j BT

j )S̄ = 0. (13)

Alternatively, we may consider the forward solution of the
differential Riccati equation

uj = −r−1
j BT

j Sx,

Ṡ = Q+ SA+ATS − S(
m∑
j=1

Bjr
−1
j BT

j )
TS. (14)

where we update the feedback controller with the solution S(t)
at any t ∈ [0,∞). Substituting A and Bj , we arrive at

uj = −r−1
j Wj

T
1 Sx, (15)

Ṡ = Q+ S(W2 +W3Γ1) + (WT
2 + ΓT

1W
T
3 )S

− S(
m∑
j=1

Wj1r
−1
j Wj

T
1 )S. (16)

In the following lemma, we establish the stability of the
method. It strengthens the asymptotic convergence of Theo-
rems 1 and 4 in [27] to global uniform exponential stability
under slightly weaker assumptions.

Lemma 1: Assume that (A,B) is stabilizable and Q is
positive definite. Consider system (12) with control (14),
where S(t) is the positive semi-definite solution of the FPRE
(14) with S(0) ≥ 0 for all t ∈ [0,∞). The origin of
the closed-loop system is Globally Uniformly Exponentially
Stable (GUES).

Proof. See section VII in the appendix.
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B. General case

For a known system in the form of (11), the optimal control
is given by (8) and the value is updated by the evolution of
the parameters in (10). The following theorem establishes the
stability of the closed-loop system.

Theorem 3.1: Assume that the system (2) with (3) is given
and is locally controllable and observable. Suppose that x
remains close to the origin and solutions of (10) remain
bounded. Then, there exists some r1 > 0 such that the
solution P (t) of (10) starting from P (0) = 0 establishes an
asymptotically stable controller for all x0 ∈ D̄r1 . Moreover,
as x→ 0, also by choosing γ → 0, the feedback control rule
converges to the LQR control of the linearized system given
by (13).

Proof. See section VII in the appendix.

C. Stability guarantees with the SMT solver

The stability of equilibrium points of the nonlinear sys-
tem (1) can be guaranteed by the Lyapunov stability theorem,
which is given below.

Theorem 3.2 (Lyapunov Stability Theorem): Consider the
nonlinear control-affine system (1) and assume the origin is
an equilibrium point. Let V (x) be a continuously differentiable
and positive definite function with a negative definite Lie
derivative defined on D satisfying

V (0) = 0 and V (x) > 0 for all x ∈ D with x ̸= 0, (17)

V̇ (x) =
∂V

∂x
(f(x) + g(x)u) < 0 for all x ̸= 0

and for all admissible control inputs. (18)

Then the origin is asymptotically stable.
We know that the level sets of the Lyapunov function V

provide an estimate of the Region of Attraction (ROA) of the
equilibrium point.

Lemma 2 (ROA estimate with Lyapunov Functions): Sup-
pose that V satisfies the conditions of Theorem 3.2. Defining

V c := {x ∈ D | V (x) ≤ c},

we have V c a ROA for (1) for every c > 0.
Here, the value function in (6) serves as a Lyapunov

function candidate with the approximate optimal control (8).
In order to use SMT solvers to check the validity of the
candidates, we follow [8] in writing the Lyapunov conditions
in Theorem 3.2 as falsification constraints in the form of first-
order logic formula over reals as follows. We write

Φε(x) :=

(
n∑

i=1

x2i ≥ ε

)
∧
(
V (x) ≤ 0 ∨ V̇ (x) ≥ 0

)
, (19)

where ε is a numerical error parameter introduced to control
numerical sensitivity around the origin. SMT solvers typically
return UNSAT when there are no violations of the negation
of the Lyapunov conditions on the state space, or counterex-
amples that satisfy the constraints. If it returns UNSAT for a
given candidate, then the candidate is certified as a Lyapunov
function which may be used to estimate the ROA.

Plant

Update
෡𝑊, ෡𝑊𝑗

𝜙 𝑥 ,
𝜕𝜙(𝑥)

𝜕𝑥
,

ሶ𝑥

Update Control 
Eq. (8)

Update 𝑃
Eq. (10)

Fig. 1: A schematic view of the learning control framework.

Next, we present an online learning algorithm based on the
proposed optimal control framework.

IV. MBRL ALGORITHM

By considering the nonlinear input affine system in terms of
bases as in (2), the state-dependent matrix differential equation
(10) is exploited to establish a nonlinear feedback control. We
develop this line of thinking into an MBRL algorithm, whose
specification comprises this section.

In the appendix IX, we review the components involved
in the implementation of the algorithm including the control
and the model update units, shown in Fig. 1. Accordingly, we
present the learning algorithm as in Algorithm 1.

Algorithm 1
1: P (0)← 0p×p

2: Ŵ and Ŵj ← Small random values
3: for k = 0, 1, . . . do
4: acquire samples (ẋ, x, u) at tk
5: evaluate Φ and ∂Φ

∂x

6: update Ŵ and Ŵj using (39)
7: update P by integrating (10) for some time length T0
8: update control u using (8)
9: end for

Algorithm 1 may be understood as a continuous-time variant
of the generalized policy algorithm [21] by integrating (10) at
each step k for some time length T0. Accordingly, Step 7 can
be interpreted as the Value Update step as it directly results in
the updated value. Then, the Policy Improvement step is given
by Step 8. One can choose T0 considerably large so that the
value converges at each iteration. The case t → ∞ results in
the Policy Iteration (PI) algorithm.

Remark 3: Considering that an identified model is em-
ployed, asymptotic convergence to the origin may not be
possible due to the uncertainty in the model. This can be
circumvented by employing robust techniques such as [34],
[28]. By doing so, in the appendix section VIII, we integrate
a robust component with the presented learning approach that
facilitates asymptotic convergence.
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V. EXPERIMENTS

To illustrate the effectiveness of the algorithm, we apply
the Algorithm 1 to a linear system and several benchmark
examples including the pendulum, cartpole, and quadrotor
systems. The dynamics and settings of simulations can be
found in the supplementary material. Furthermore, we give
some qualitative comparisons with a set of classic RL and
optimal control approaches. In addition, we validate the sta-
bility and estimate the ROAs of the nonlinear systems with the
obtained controllers with the SMT solver, dReal [12], which
handles nonlinear real arithmetic to verify the validity of the
Lyapunov functions. The complete source codes for the ex-
amples implemented and comparison results can be found at:
https://github.com/Miiilad/Online-MBRL-with-Guarantees.

A. Comparison and consistency with LQR

As mentioned in Section III, SOL yields the same results
LQR for linear systems and on a small region around the
equilibrium point for nonlinear systems where the linearization
is valid. In this example, we investigate the convergence of
the SOL algorithm to the optimal control for an unknown
linear system to show consistency. The optimal control is given
by the solution of the associated Algebraic Riccati Equation
(ARE). We compare this with the value parameters P obtained
by SOL, where the chosen basis includes only constant and
linear terms, i.e. Φ = [1 xT ]. Figure 2b shows that solutions
of (10) converge to the parameters given by LQR. Likewise,
Figure 2a shows the constant linear feedback gain obtained by
SOL converging to the optimal LQR gain.

B. Existing RL and optimal control methods for comparison

Before presenting the main results and comparisons, we give
brief summaries of the Proximal Policy Optimization (PPO),
SGA, and ADP methods used for subsequent comparisons.

PPO is a model-free actor-critic algorithm introduced by
[29]. It uses an actor-network πθ(a|s) that takes the state s as
an input and outputs a distribution over actions a, and a value
network Vϕ(s) that takes the state s as an input and outputs
the expected return. The policy is trained at every episode by
solving argmaxθE[min(rθ(a|s)A(s, a), clip(rθ(a|s), 1−ϵ, 1+
ϵ)A(s, a))], where rθ(a|s) = πθ(a|s)

πθold
(a|s) is the ratio term, and

A(s, a) is the advantage term. It effectively constrains the ratio
rθ(a|s) to ensure steady updates. We use the implementation
by [2] and train the PPO algorithm on the three environments
using Kaggle CPUs. To ensure the reproducibility of our
results, we record our hyperparameters in Appendix X-B.
The actor network is a neural network with one hidden layer
of size 64 to aid in verification. PPO is trained on each
environment for 5 seeds for one million time steps each. The
additive inverse of the LQR cost function is used as the reward
function.

SGA is a method for solving optimal control problems based
on policy iteration introduced in [3]. Like other policy iteration
algorithms, SGA generates sequences of controllers ui and
Lyapunov functions Vi by computing the latter as the solution
to a certain PDE (called the Generalized HJB or GHJB in
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Fig. 2: (a). For the linear system, we illustrate that the feedback
gain given by the proposed algorithm asymptotically converges
to the optimal gain given by LQR shown in Figure 2b.
(b). The components of P converge to the LQR solution.
Accordingly, it is evident that by running SOL algorithm on
the linear system the parameters of the value converge to the
LQR solution.

[3]) and then using it to update the former. This process is
detailed on page 27 of [3]. SGA approximates the solution of
the GHJB on a certain domain using a Galerkin finite element
method and associated weak formulation to obtain the optimal
controllers and corresponding Lyapunov functions at the same
time.

The last one is the off-policy semi-global variant of ADP
described in Chapter 3 of [14]. Given some initial control
policy u0 that keeps solutions bounded, this method observes
solution trajectories of the system under the input u = u0 + e
where e is some noise included for the purpose of exploration.
Once enough data are collected, the control is iteratively
improved using these data in place of the system dynamics
f(x) and g(x), so that the method is model-free. When certain
conditions are satisfied, this process generates a sequence ui
of controls (and their corresponding value functions Vi) that
converges to the optimal control. A summary of this algorithm
is given on page 42 of [14].

C. Inverted Pendulum

Firstly, we run our algorithm and the aforementioned three
algorithms on a well-known nonlinear system, the inverted

https://github.com/Miiilad/Online-MBRL-with-Guarantees


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2020 6

pendulum. For SGA, the Vi are approximated using a ba-
sis consisting of polynomials of even degree. Initial control
u0 = (x1 − 19.6 sin(xi))/40; is selected. The domain of
approximation is {(x1, x2) : |x1| ≤ 3, |x2| ≤ 10} and the
order of the basis is eight. For ADP, we implement this method
for the pendulum example. Polynomials of degrees two and
four are used as basis functions for Vi, while their derivatives
comprise the basis functions for ui. The initial control must
be in the span of the basis, so u0 = −x1 is selected. The
exploration noise e consists of six superimposed sinusoids of
different frequencies. The comparison of the key parameters
of the four methods under discussion can be found in Table I.
The runtime is the average time taken for the model to perform
a single evaluation and update.

For runtime, SOL is the fastest by far, and SGA is extremely
slow. For training time, this table shows that SGA takes much
longer than PPO, which in turn takes longer than SOL and
ADP, which are very comparable. SOL uses weighted basis
functions to return a controller, which requires significantly
fewer parameters compared to actor and critic networks in
PPO. In contrast, SGA requires symbolic computation, which
is cumbersome when the dimension of the system or basis is
high. In fact, the present examples are not far from the limit of
practical feasibility for this algorithm, as it is presented in [3].
ADP makes use of off-policy learning, where all observation
of system trajectories is completed first, and the same obser-
vations are used to compute all subsequent values and control
iterates. This reduces the cost associated with simulation. To
further illustrate it, Fig. 3a shows that the controllers obtained
via SGA, ADP, and SOL have very similar performance on
average over 100 trajectories, while PPO has a mean control
cost of approximately 0.06 due to its model-free nature, which
leads to the lack of stability guarantees in LQR optimal control
tasks. Although the former is model-free and the latter is
model-based, both ADP and SGA require an initial stabilizing
control to be known, and the selection of this control and other
things such as the exploration noise can have a significant
impact on the convergence of the algorithm. In contrast, SOL
requires far fewer specifications to be made in advance.

Moreover, Fig. 3b shows the comparison among the ROA
estimates obtained with the four different methods. Here, we
use the SMT solver to verify the obtained Lyapunov functions
on the aforementioned domain with δ = 0.01. For PPO, we
use the algorithm proposed in [8] to learn a neural Lyapunov
function, since it only returns an optimal controller as a model-
free RL algorithm. As illustrated, SOL returns the largest
ROA estimate on the domain, while ADP can only return a
valid Lyapunov function on a small region, which leads to
a relatively small ROA estimate. Furthermore, PPO does not
take the dynamics into consideration when solving the optimal
control problem, leading to a peculiar shape. In summary,
SOL clearly outperforms PPO and produces a controller with
very similar performance to SGA and ADP but with shorter
training and runtimes, and requiring less a priori inputs, and
SOL captures the largest ROA estimate.
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Fig. 3: (a) Control cost curves for each algorithm on the
inverted pendulum environment averaged over 100 trajectories.
The shaded area indicates one standard deviation. Initial con-
ditions are sampled from U(−1, 1). (b) Comparison of ROA
estimates of each algorithm for the inverted pendulum.

Environment Method Avg cost Runtime (s) Training time

Pendulum

SOL 0.0158 0.003 2.4 sec
PPO 0.0811 0.618 24 min
SGA 0.0163 21.966 220 sec
ADP 0.0165 0.127 2.6 sec

TABLE I: Comparison of performance of the four methods
for the inverted pendulum

D. Cartpole and Quadrotor

In this subsection, we consider the other two typical nonlin-
ear control problems, Cartpole and Quadrotor for comparison
with PPO. The detailed comparison can be found in Table II.
In a similar manner, these two examples also show that
SOL outperforms PPO in training time, runtime, and control
costs. The detailed visualized comparison can be found in the
supplementary material, as it has been omitted from the main
text due to page limitations.
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Environment Method Avg cost Runtime (s) Training time

Cartpole SOL 0.0815 0.002 4.7 sec
PPO 1094.056 0.597 28 min

Quadrotor SOL 33.986 0.010 61.4 sec
PPO 1207.293 0.951 1 hr 20 min

TABLE II: Comparison of performance of SOL and PPO for
Cartpole and Quadrotor

VI. CONCLUSION

This paper proposes an optimal control framework in con-
junction with a system identification technique, which can
be used as an online learning-based algorithm for nonlinear
control-affine systems. We also demonstrate the asymptotic
stability and optimality of the resulting control around the
equilibrium by investigating its connections with the analogous
LQR, while the stability guarantees for the nonlinear system
are further certified by an SMT solver. Finally, comparisons
are made among the proposed approach and other well-known
RL and optimal control techniques, including LQR, PPO,
SGA, and ADP. The results demonstrate the advantages of
the proposed technique in terms of computational efficiency,
performance, and the fact that no initially stable controllers
are needed.
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VII. APPENDIX: PROOFS AND LEMMAS

Proof. 1: (Lemma 1) Note that Q > 0 implies (A,Q) is
observable (and hence detectable). According to [7], [27], S(t)
converges to the unique stabilizing solution S̄ of the ARE. It
can be proved by the Lyapunov test for observability (see,

https://github.com/nikhilbarhate99/PPO-PyTorch
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e.g., [13, Theorem 15.10]) that S̄ > 0. Consider the Lyapunov
function

V (x) = xT S̄x.

Let G = BR−1BT . Clearly, G is a constant symmetric matrix
and G ≥ 0. Furthermore, S(t) is also symmetric. We have

V̇ (x)= xT S̄(A−GS(t))x+ xT S̄(AT − S(t)G)S̄x
= xT

[
S̄A+AT S̄ − S̄GS(t)− S(t)GS̄

]
x

= xT [S̄A+AT S̄ +Q− S̄GS̄ −Q+ S̄GS̄ − S̄GS(t)
− S(t)GS̄]x

= xT
[
−Q− S̄GS̄ + 2S̄GS̄ − S̄GS(t)− S(t)GS̄

]
x

≤ −xT (Q− E(t))x,

where E(t) = 2S̄GS̄ − S̄GS(t) − S(t)GS̄ and we used the
ARE (13) satisfied by S̄ to obtain the last equality and S̄GS̄ ≥
0 to obtain the inequality. Since S(t) → S̄ as t → ∞ [27],
we have E(t) → 0 as t → ∞. This can be seen by taking
the limit in E(t) = S̄G(S̄ − S(t)) + (S̄ − S(t))GS̄ as t→ 0.
There exists some T > 0 and a positive constant µ such that
Q(t)− E(t)− µI ≥ 0. It follows that

V̇ (x) ≤ −µ∥x∥2, ∀t ≥ T, ∀x ∈ IRn. (20)

Now, we can show that there exists some k > 0 and c > 0
such that

∥x(t)∥ ≤ k∥x(T )∥e−c(t−T ), t ≥ T. (21)

By continuity and the fact that S(t) → S̄ as t → ∞, S(t)
is bounded on [0,∞). It follows from the closed-loop system
that there exist constants C > 0 and M > 0 such that

∥x(t)∥ ≤M∥x0∥eCt, t ≥ 0, (22)

where x0 = x(0). Indeed, a simple comparison argument
suffices to show this. We have
d

dt
[∥x(t)∥2] = 2xT (t)(A−BR−1BTS(t))x(t) ≤ 2C∥x(t)∥2,

where such a constant C > 0 exists because S(t) is bounded
on [0,∞), which implies (22) with M = 1. On the interval
[0, T ], we can rewrite (22) as

∥x(t)∥ ≤Me(C+c)t∥x0∥e−ct

≤Me(C+c)T ∥x0∥e−ct, ∀t ∈ [0, t]. (23)

For t ≥ T , rewrite (21) as

∥x(t)∥ ≤ kecT ∥x(T )∥e−ct

≤ kMe(C+c)T ∥x0∥e−ct, ∀t ≥ T, (24)

where we used x(T ) ≤ M∥x0∥eCT from (22). Combining
(23) and (24) gives

∥x(t)∥ ≤ K∥x0∥e−ct, ∀t ≥ 0, (25)

where K = kMe(C+c)T (note that k ≥ 1 for (21) to hold).
This verifies that the origin is GUES for the closed-loop
system.

Proof. 2: (Theorem 3.1) Consider a ball of radius r around
the origin containing the solutions. We will show that the
dominating part of the control obtained by solving (10) is

equivalent to the LQR control given by (16). For this purpose,
we first consider the Taylor expansion of bases in (11) and its
partial derivatives as below,

Φ =

 1
x

Γ1x+O(x2)

 , and
∂Φ

∂x
=

 0
I

Γ1 +O(x)

 , (26)

where O(xα) denotes higher order terms xα1
1 xα2

2 . . . xαn
n in

appropriate dimensions with α =
∑n

i=1 αi, and non-negative
integers αi . Moreover, Q̄ and P are structured matrices
including rectangular blocks of appropriate dimensions as
below,

Q̄ =

0 0 0
0 Q 0
0 0 0

 , and P =

P1 P2 P3

PT
2 P4 P5

PT
3 PT

5 P6

 .
By substituting Q̄,P in (10), it is easy to investigate that
starting from the initial condition P (0) = 0, any term in the
equations of Ṗ1, Ṗ2, and Ṗ3 will depend on P1, P2, or P3 as
below

Ṗ1 =− P2K1K
T
1 P

T
2 − P3Γ1K1K

T
1 P

T
2 − P2K1K

T
1 P

T
3

− P3Γ1K1K
T
1 P

T
3 ,

Ṗ2 =P2W2 + P3Γ1W2 − P2K1K
T
1 P4 − P3Γ1K1K

T
1 P4

− P2K1K
T
1 P

T
5 − P3Γ1K1K

T
1 P

T
5 ,

Ṗ3 =P2W3 + P3Γ1W3 − P2K1K
T
1 P5 − P3Γ1K1K

T
1 P5

− P2K1K
T
1 P6 − P3Γ1K1K

T
1 P6,

where K1 = Wj1 + Wj2x + Wj3Γ1x. This choice of the
initial condition is justified by the fact that no initial controller
is assumed in this framework. Therefore, considering the zero
derivatives and the zero initial conditions, we can conclude that
solutions P1, P2, and P3 will stay at zeros, and the matrix P

will only grow on the block
[
P4 P5

PT
5 P6

]
. Therefore, for brevity,

we will follow the computations only for this block as long as
this simplification does not cause ambiguity. Now, let us take
one step back and start with

Φ(x)T ṖΦ =ΦT Q̄Φ+ ΦTP
∂Φ

∂x
WΦ+ ΦTWT ∂Φ

∂x

T

PΦ

− ΦTPΦxWjΦr
−1
j ΦTWT

j

∂Φ

∂x

T

PΦ− γΦTPΦ,

(27)

which is given by (9) reversed in time to obtain the equation in
forward time. For the non-zero block of P4, P5, and P6 with
the corresponding bases, the left-hand side can be rewritten as 1

x
Γ1x+O(x2)

T0 0 0

0 Ṗ4 Ṗ5

0 ṖT
5 Ṗ6

 1
x

Γ1x+O(x2)

 =

 1
x

O(x2)

T

0 0 0

0 Ṗ4 + ΓT
1 Ṗ

T
5 + Ṗ5Γ1 + ΓT

1 Ṗ6Γ1 Ṗ5 + ΓT
1 Ṗ6

0 ṖT
5 + Ṗ6Γ1 Ṗ6

 1
x

O(x2)

 ,
(28)

where we shifted the linear term in the third entry of the bases
to the second. In the next step, we will consider the following
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change of variables throughout the matrix differential equa-
tion:

Z1 = P4 + ΓT
1 P

T
5 + P5Γ1 + ΓT

1 P6Γ1,

Z2 = P5 + ΓT
1 P6,

Z3 = P6. (29)

For this reason, we apply the same modification of bases to all
the terms on the right-hand side of (27). The modification will
not affect the first term since Q̄ is zero everywhere except in
the block corresponding to the second basis, which remained
unchanged. Then, let us consider the second term on the right
hand side which becomes

ΦTP
∂Φ

∂x
WΦ = 1
x

Γ1x+O(x2)

T 0 0 0
0 P4 P5

0 PT
5 P6

 0
I

Γ1 +O(x)


[
0 W2 W3

]  1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T 0 0 0
0 Υ1 Υ2

0 Υ3 Υ4

 1
x

Γ1x+O(x2)


=

 1
x

O(x2)

T 0 0 0
0 Ῡ1 Ῡ2

0 Ῡ3 Ῡ4

 1
x

O(x2)

 , (30)

where

Υ1 = P4W2 + P5Γ1W2 + P5O(x)W2,

Υ2 = P4W3 + P5Γ1W3 + P5O(x)W3,

Υ3 = PT
5 W2 + P6Γ1W2 + P6O(x)W2,

Υ4 = PT
5 W3 + P6Γ1W3 + P6O(x)W3,

Ῡ1 = Z1(W2 +W3Γ1) + Z2O(x)(W2 +W3Γ1),

Ῡ2 = Z1W3 + Z2O(x)W3,

Ῡ3 = ZT
2 (W2 +W3Γ1) + Z3O(x)(W2 +W3Γ1),

Ῡ4 = ZT
2 W3 + Z3O(x)W3,

and we used (29) to get

P4W2 + P5Γ1W2 + P4W3Γ1 + P5Γ1W3Γ1

+ ΓT
1 P

T
5 W2 + ΓT

1 P6Γ1W2 + ΓT
1 P

T
5 W3Γ1 + ΓT

1 P6Γ1W3Γ1

= (P4 + ΓT
1 P

T
5 + P5Γ1 + ΓT

1 P6Γ1)(W2 +W3Γ1)

= Z1(W2 +W3Γ1),

P5O(x)W2 + P6O(x)W3Γ1 + ΓT
1 P6O(x)W2 + ΓT

1 P6O(x)W3Γ1

= Z2O(x)(W2 +W3Γ1),

P4W3 + P5Γ1W3 + P5O(x)W3 + ΓT
1 P

T
5 W3 + ΓT

1 P6Γ1W3

+ ΓT
1 P6O(x)W3

= (P4 + P5Γ1 + ΓT
1 P

T
5 )W3 + (P5 + ΓT

1 P6)O(x)W3

+ ΓT
1 P6Γ1W3

= (Z1 − ΓT
1 Z3Γ1)W3 + Z2O(x)W3 + ΓT

1 Z3Γ1W3

= Z1W3 + Z2O(x)W3,

PT
5 W2 + P6Γ1W2 + P6O(x)W2 + PT

5 W3Γ1 + P6Γ1W3Γ1

+ P6O(x)W3Γ1

= (PT
5 + P6Γ1)(W2 +W3Γ1) + P6O(x)(W2 +W3Γ1)

= Z2
2 (W2 +W3Γ1) + Z3O(x)(W2 +W3Γ1),

PT
5 W3 + P6Γ1W3 + P6O(x)W3

= ZT
2 W3 + Z3O(x)W3.

Furthermore, for the last term in the right-hand side of (27),
the following hold.

Φ(x)TP
∂Φ

∂x

m∑
j=1

(WjΦr
−1
j ΦTWT

j )
∂Φ

∂x

T

PΦ

=

 1
x

Γ1x+O(x2)

T 0 0 0
0 P4 P5

0 PT
5 P6

 0
I

Γ1 +O(x)


m∑
j=1

( [
Wj1 Wj2 Wj3

] 1
x

Γ1x+O(x2)

r−1
j

 1
x

Γ1x+O(x2)

T

Wj1
Wj2
Wj3

) 0
I

Γ1 +O(x)

T 0 0 0
0 P4 P5

0 PT
5 P6

 1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T 0 0 0
0 P4 P5

0 PT
5 P6

 0
I

Γ1 +O(x)

Ω2

 0
I

Γ1 +O(x)

T 0 0 0
0 P4 P5

0 PT
5 P6

 1
x

Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T

(

 0
P4 + P5Γ1

PT
5 + P6Γ1

+

 0
P5O(x)
P6O(x)

)Ω2

(

 0
P4 + P5Γ1

PT
5 + P6Γ1

+

 0
P5O(x)
P6O(x)

)T
 1

x
Γ1x+O(x2)


=

 1
x

Γ1x+O(x2)

T 0 0 0
0 Ω3 Ω4

0 ΩT
4 Ω5

 1
x

Γ1x+O(x2)


+

 1
x

Γ1x+O(x2)

T 0 0 0
0 Ω6 Ω7

0 ΩT
7 Ω8

 1
x

Γ1x+O(x2)


=

 1
x

O(x2)

T 0 0 0
0 Ω̄3 Ω̄4

0 Ω̄T
4 Ω̄5

 1
x

O(x2)


+

 1
x

O(x2)

T 0 0 0
0 Ω̄6 Ω̄7

0 Ω̄T
7 Ω̄8

 1
x

O(x2)

 , (31)
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where Ω2 to Ω8 are defined as

Ω2 =

m∑
j=1

r−1
j

[
Wj1 Wj2 Wj3

]  1
x

Γ1x

 1
x

Γ1x

T Wj1
Wj2
Wj3

T

=

m∑
j=1

r−1
j

[
Wj1 Wj2 Wj3

]
 1 xT xTΓT

1

x xxT xxTΓT
1

Γ1x Γ1xx
T Γ1xx

TΓT
1

Wj1
Wj2
Wj3

T

=

m∑
j=1

(
Wj1Wj

T
1 +Wj2xWj

T
1 +Wj3Γ1xWj

T
1 +

Wj1x
TWj

T
2 +Wj2xx

TWj
T
2 +Wj3Γ1xx

TWj
T
2 +

Wj1x
TΓT

1Wj
T
3 +Wj2xx

TΓT
1Wj

T
2

+Wj3Γ1xx
TΓT

1Wj
T
3

)
r−1
j ,

Ω3 = (P4 + P5Γ1)Ω2(P4 + ΓT
1 P

T
5 ),

Ω4 = (P4 + P5Γ1)Ω2(P5 + ΓT
1 P6),

Ω5 = (PT
5 + P6Γ1)Ω2(P5 + ΓT

1 P6),

Ω6 = (P4 + P5Γ1)Ω2O(x)PT
5 + P5O(x)Ω2(P4 + ΓT

1 P
T
5 )

+ P5O(x2)PT
5 ,

Ω7 = (P4 + P5Γ1)Ω2O(x)P6 + P5O(x)Ω2(P5 + ΓT
1 P6)

+ P5O(x2)P6,

Ω8 = (PT
5 + P6Γ1)Ω2O(x)P6 + P6O(x)Ω2(P5 + ΓT

1 P6)

+ P6O(x2)P6.

Moreover, Ω̄3 to Ω̄3, are their analogous blocks after modi-
fying the bases, where they can also be rewritten in terms of
the new variables defined in (29) as below

Ω̄3 = (P4 + ΓT
1 P

T
5 + P5Γ1 + ΓT

1 P6Γ1)Ω2

(P4 + ΓT
1 P

T
5 + P5Γ1 + ΓT

1 P6Γ1)
T

= Z1Wj1Wj
T
1 Z1,

Ω̄4 = (PT
4 + P5Γ1 + ΓT

1 P
T
5 + ΓT

1 P6Γ1)Ω2(P5 + ΓT
1 P6)

= Z1Wj1Wj
T
1 Z2,

Ω̄5 = Ω5 = ZT
2 Wj1Wj

T
1 Z2,

Ω̄6 = Ω6 + ΓT
1 Ω

T
7 +Ω7Γ1 + ΓT

1 Ω8Γ1

= (P4 + P5Γ1 + ΓT
1 P

T
5 + ΓT

1 P6Γ1)Ω2O(x)PT
5

+ (P5 + ΓT
1 P6)O(x)Ω2(P4 + ΓT

1 P
T
5 )

+ (P4 + P5Γ1 + ΓT
1 P

T
5 + ΓT

1 P6Γ1)Ω2O(x)P6Γ1

+ (P5 + ΓT
1 P6)O(x)Ω2(P5 + ΓT

1 P6)Γ1

+ (P5 + ΓT
1 P6)O(x2)PT

5 + (P5 + ΓT
1 P6)O(x2)P6Γ1

= (P4 + P5Γ1 + ΓT
1 P

T
5 + ΓT

1 P6Γ1)Ω2O(x)(PT
5 + P6Γ1)

+ (P5 + ΓT
1 P6)O(x)Ω2(P4 + ΓT

1 P
T
5 + P5Γ1 + ΓT

1 P6Γ1)

+ (P5 + ΓT
1 P6)O(x2)(PT

5 + P6Γ1)

= Z1Ω2O(x)ZT
2 + Z2O(x)Ω2Z1 + Z2O(x2)ZT

2 ,

Ω̄7 = Ω7 + ΓT
1 Ω8 = Z1Ω2O(x)Z3 + Z2O(x)Ω2Z2 + Z2O(x2)Z3,

Ω̄8 = Ω8 = ZT
2 Ω2O(x)Z3 + Z3O(x)Ω2Z2 + Z3O(x2)Z3.

To derive these equations we also used the fact that the
constant term will dominate in Ω2 as x → 0. Hence, we get
Ω2 →

∑m
j=1 r

−1
j Wj1Wj

T
1 .

By substituting (28), (30), and (31) in (27), one can obtain

Ż1 =Q+ Z1(W2 +W3Γ1) + (WT
2 + ΓT

1W
T
3 )Z1

− Z1(

m∑
j=1

Wj1r
−1
j Wj

T
1 )Z1 + Z2O(x)(W2 +W3Γ1)

− γZ1 + (W2 +W3Γ1)
TO(x)ZT

2 − Z1Ω2O(x)ZT
2

− Z2O(x)Ω2Z1 − Z2O(x2)ZT
2 , (32)

Ż2 =Z1W3 + (W2 +W3Γ1)
TZ2 − Z1(

m∑
j=1

Wj1r
−1
j Wj

T
1 )Z2

− γZ2 + Z2O(x)W3 + (W2 +W3Γ1)
TO(x)ZT

3

− Z1Ω2O(x)Z3 − Z2O(x)Ω2Z2 − Z2O(x2)Z3, (33)

Ż3 =ZT
2 W3 +WT

3 Z2 − Z2(

m∑
j=1

Wj1r
−1
j Wj

T
1 )Z2

− γZ3 + Z3O(x)W3 +WT
3 O(x)ZT

3 − ZT
2 Ω2O(x)Z3

− Z3O(x)Ω2Z2 − Z3O(x2)Z3. (34)

Moreover, for the optimal control (8) takes the following
form,

u∗j = −

 1
x

Γ1x+O(x2)

T

r−1
j

0 0 0
0 P4 P5

0 PT
5 P6

 0
I

Γ1 +O(x)


[
Wj1 Wj2 Wj3

]  1
x

Γ1x+O(x2)


= −

 1
x

Γ1x+O(x2)

T

r−1
j

 0
P4 + P5Γ1

PT
5 + P6Γ1


[
Wj1 Wj2 Wj3

]  1
x

Γ1x+O(x2)


= −r−1

j xT (P4 + P5Γ1 + ΓT
1 P

T
5 + ΓT

1 P6Γ1)

(Wj1 +Wj2x+Wj3Γ1x) +O(x3)

= −r−1
j xT (P4 + P5Γ1 + ΓT

1 P
T
5 + ΓT

1 P6Γ1)Wj1

− r−1
j xT (P4 + P5Γ1 + ΓT

1 P
T
5 + ΓT

1 P6Γ1)

(Wj2x+Wj3Γ1x) +O(x3)

= −r−1
j xTZ1Wj1 +H1(Z1)O(x2), (35)

By substituting the control in the system, we obtain the closed-
loop system as

ẋ =
[
0 W2 W3

]  1
x

Γ1x+O(x2)


+

m∑
j=1

[
Wj1 Wj2 Wj3

]  1
x

Γ1x+O(x2)

uj
= (W2 +W3Γ1)x+O(x2)

+

m∑
j=1

(Wj1 +Wj2x+Wj3Γ1x+O(x2))uj
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= (A−GZ1 +H2(Z1)O(x))x, (36)

where the linear term will dominate as x ∈ D̄. It should
be noted that, among the solutions of (32) to (34), only
Z1(t) is directly effective in the control. Equation (32) can
be summarized as

Ż1 = Q+ Z1A+ATZ1 − Z1(

m∑
j=1

Bj1r
−1
j Bj

T
1 )Z1

− γZ1 +O(x)H3(Z1,2) (37)

where we used H3 to lump together the terms related to Z1

and Z2. Equation (37) resembles the Riccati equation for the
linearized system (12) with higher-order terms of x and the
discounting term.

Now, suppose that a trajectory stays near the origin, i.e.
∥x(t)∥ is small, and γ is set to be small. Then, −γZ1 +
O(x)H3(Z1,2) can be made arbitrarily small within some
radius r1 > 0 from the origin. Moreover, regarding that the
equation without these extra terms exponentially converges to
the ARE solution [27], Z1 can be kept close to the solution of
(14) with the bounded extra terms, where the distance clearly
depends on r1 and γ. Let us define Sδ = Z1 − S where
∥Sδ∥ ≤ δr.

Next, we demonstrate that the obtained control is also
stabilizing for the nonlinear closed-loop system (36). It is easy
to verify that, r1 > 0 can be chosen small enough so that the
nonlinear closed-loop system (36) is also asymptotically stable
by employing the Lyapunov function V1 = xT S̄x as below

V̇1 = ẋT S̄x+ xT S̄ẋ

= xT
(
A−GZ1 +H2(Z1)O(x)

)T
S̄x+

xT S̄
(
A−GZ1 +H2(Z1)O(x)

)
x

= xT
(
AT S̄ + S̄A− Z1GS̄ − S̄GZ1 + H̄2(Z1)O(x)

)
x

= xT
(
AT S̄ + S̄A− (S + Sδ)GS̄ − S̄G(S + Sδ)

+ H̄2(Z1)O(x)
)
x

= xT (−Q+ S̄GS̄ − SGS̄ − S̄GS − SδGS̄ − S̄GSδ

+ H̄2(Z1)O(x)
)
x

= −xT
(
Q2 + E1(t)

)
x,

where we defined H2(Z1) to collect all higher order terms and
we used (13) and E1(t) = SδGS̄+S̄GSδ−H̄2(Z1)O(x)

)
x in

the derivations. It is evident that Q2 = Q−S̄GS̄+SGS̄+S̄GS
is a positive definite matrix since S → S̄, Q > 0 and
S̄GS̄ ≥ 0. Now, D̄r1 can be considered such that Q2

dominates, and this results in Q2 +E1(t) > 0, hence, V̇1 < 0
is obtained, except at the origin. In conclusion, asymptotic
stability is guaranteed within D̄r1 .

Moreover, assuring the asymptotic stability, we have x→ 0.
Furthermore, if γ is made sufficiently small, then the steady
state solution of (37) will converge to the steady state solution
of (16), and hence to the solution of the algebraic Riccati
equation (13), i.e Z1 → S̄.

VIII. APPENDIX: ASYMPTOTIC CONVERGENCE WITH
APPROXIMATE DYNAMICS

Consider the system structured as

ẋ =WΦ+

m∑
j=1

WjΦûj + ϵ. (38)

where ûj = −ΦT r−1
j P̂ΦxŴjΦ is the feedback control rule

obtained based on the estimation of the system (Ŵ , Ŵj).
Moreover, ϵ is the bounded approximation error in D. By
assuming W = Ŵ + W̃ and Wj = Ŵj + W̃j , this can be
rewritten as

ẋ = ŴΦ+

m∑
j=1

ŴjΦûj +∆(t),

where unidentified dynamics are lumped together as ∆(t). By
the assumption that the feedback control uj is bounded in D,
we have ∥∆(t)∥ ≤ ∆̄. For asymptotic convergence, and also
to promote the robustness of the controller, the effect of the
uncertainty should be taken into account. Hence, we use an
auxiliary vector ρ to get

ẋ = ŴΦ+

m∑
j=1

ŴjΦûj +∆(t) + ρ− ρ

= ŴρΦ+

m∑
j=1

ŴjΦûj +∆(t)− ρ,

where assuming that Φ also includes the constant basis, we
adjusted the corresponding column in the system matrix to
get Ŵρ. In the case ∆̄ = 0, by using Theorem 3.1, the
controller û can be obtained such that the closed system is
locally asymptotically stable. For the case ∆̄ > 0, although
the system will stay stable for small enough ∆̄, it may not
asymptotically converge to zero. Then, similar to [34], [28],
we obtain ρ as below to help sliding the system state to zero

ρ =

∫ t

0

[k1x(τ) + k2sign
(
x(τ)

)
]dτ ,

where k1 and k2 are positive scalars. It can be shown that over
time ∥∆(t)−ρ∥ → 0, and hence the system will asymptotically
converge to the origin.

IX. APPENDIX: EXPERIMENTS DETAILS

The approach employed in this paper is implemented using
Python on a Windows 11 (64-bit) operating system. The
hardware setup consists of an Intel(R) Core(TM) i7-12700H
processor with 16.0 GB of RAM.

In what follows, we discuss the main steps involved in
Algorithm 1 in more detail.

A. Control Update

To initiate the learning process, we begin by executing the
system with an initial value of x0 from the domain D. We
then solve the matrix differential equation (10) as the system
evolves. In our simulation, we employ a Runge-Kutta solver
to numerically integrate the system dynamics, serving as a
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substitute for the actual system in a real-world application.
During this simulation, the solver may take smaller time
steps, but we only allow measurements and control updates
at specific time instances tk = kh, where h represents the
sampling time, and k takes on values 0, 1, 2, . . . .

To solve the differential equation (10) in continuous time,
we employ the Runge-Kutta solver with a similar configura-
tion. Here, the weights and states in the equation are updated
using a system identification algorithm and the measurements
xk are obtained at each iteration of the control loop, respec-
tively. It is advisable to initialize the matrix P (0) as a zero
matrix.

For (10), it is also necessary to compute the partial deriva-
tives ∂Φ/∂xk at each time step. As the basis functions Φ are
predetermined, these partial derivatives can be analytically cal-
culated and stored as functional representations. Consequently,
they can be evaluated for any xk in a manner similar to
evaluating Φ itself. By solving equation (10), we can determine
the control update at any given time step tk using equation (8).

In the examples presented in this paper, we choose the basis
vector Φ as given in Table. III.

System Φ
Linear System [1, x1, x2, x3]

Inverted Pendulum [1, x1, x2, sinx1, sinx2]
Cartpole [1, x1, . . . , x4, x2

1, . . . , x
2
4, sinx1, . . . , sinx4]

Quadrotor [1, x1, . . . , x12]

TABLE III: Basis vector Φ chosen

a) Computational complexity:: The computational com-
plexity involved in updating the parameters using equation (10)
is determined by the matrix multiplications of size p. It is
worth mentioning that due to the symmetry of the parameter
matrix P , this equation updates a total of L = (p2 + p)/2
parameters, which corresponds to the number of bases utilized
in the value function. Therefore, in terms of the number of
parameters, the complexity of the suggested approach is of
the order O(L3/2).

B. Model Update
We considered a given structured nonlinear system as in 2.

Therefore, having the control and state samples of the system,
we need an algorithm that updates the estimation of system
weights. Different system identification techniques found in
the literature can be employed. For Pendulum and Cartpole
systems we used Sparse Identification of Nonlinear Dynamics
(SINDy) for this purpose. As studied in [6], [15], SINDy is a
data-efficient tool to extract the underlying sparse dynamics of
the sampled data. Hence, we use SINDy to update the weights
of the system to be learned. In this approach, along with the
identification, the sparsity is also promoted in the weights by
minimizing

[Ŵ Ŵ1 . . . Ŵm]k = argmin
W̄
∥Ẋk − W̄Θk∥22 + λ∥W̄∥1,

(39)

where k is the time step, λ > 0, and Θk includes a matrix of
samples with the columns of

Θk
s = [ΦT (xs) ΦT (xs)u1

s . . . ΦT (xs)um
s]

T

k ,

for sth sample. In the same order, Ẋ keeps a table of the states
derivatives approximated by ˆ̇xk = (xk − xk−1)/h.

Updating Ŵk based on a history of samples may not be
favored if the number of samples and parameters tend to
be large. Especially, real-time implementations may not be
possible because of the latency caused by the computations.
Considering the linear dependence on the system weights in
(2), one may choose the well-known Recursive Least Squares
(RLS) update rule that only uses the latest sample of the sys-
tem and Ŵk−1, hence will run considerably faster. Considering
that the quadrotor system is of higher dimension and higher
number of inputs compared to the other given examples, it
will involve many parameters. Hence for efficiency, we used
RLS instead of SINDy. It can be shown that in this case, the
following optimization problem is solved in an online scheme

[Ŵ Ŵ1 . . . Ŵm]k = argmin
W̄
∥Ẋk − W̄Θk∥22.

C. Dataset Update

For using SINDy algorithm, unlike RLS, a dataset of
samples is required to recursively perform regressions at each
time step. These weights correspond to a library of functions
given in Φ. Any sample of the system at time k, includes Θk

s

and the derivatives of the states approximated by ˆ̇xk. Samples
are stored as matrices (Ẋk,Θk), which can vary over time.

We perform SINDy updates along with the system trajecto-
ries, meaning that the dataset has to be gradually built along
with the exploration and control. Different approaches can be
employed in the choice of samples and building a dataset
online. A comparison of these techniques can be found in
[18], [31].

We assume a given maximum size of dataset Nd = 2000,
then we keep adding the samples with larger prediction errors
to it. Therefore, at any step we compare the prediction error
ėk = ∥ẋk − ˆ̇xk∥ with the average ¯̇ek =

∑k
i=1 ėk/k. Hence,

if the condition ėk > η¯̇ek holds we add the sample to the
database, where the constant 0 < η < 1 adjusts the threshold.
Choosing smaller values of η will increase the rate of adding
samples to the database. If the maximum number of samples in
the dataset is reached, we forget the oldest sample and replace
it with the recent one. Therefore, η should not be set too low
to avoid fast forgetting of the older useful samples. For the
quadrotor example, we set η = 0.9.

X. APPENDIX: SUPPLEMENTARY RESULTS

A. Control cost curves for cartpole and quadrotor

To assess the performance of SOL, PPO, and ADP, we run
the trained models on the cartpole and quadrotor environment.
The control cost at each time step is measured by computing
xTQx + uTRu at the time step. This is repeated for 100
trajectories with randomly sampled initial conditions. The
initial position, velocity, angle, and angular velocity in the
cartpole system are samples from the same continuous uniform
distribution U(a, b) defined by the bounds a and b. We plot
the mean control cost and the standard deviation (shown by
the shaded area) below.
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Fig. 4: Control cost curves for each algorithm on the cartpole
environment averaged over 100 trajectories. The shaded area
indicates one standard deviation. Initial conditions are sampled
from U(−0.05, 0.05).

Figure 4 shows that the controller returned from PPO shows
unstable behavior and oscillation around the stable equilibrium
point. SOL and ADP instead return stable controllers that
converge to the equilibrium point. For a comparison between
the two stable controllers, we plotted their performance on
the cartpole environment with a better resolution and a wider
range of initial conditions in Figure 5.
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Fig. 5: Control cost curves for SOL and ADP on the cartpole
environment averaged over 100 trajectories. The shaded area
indicates one standard deviation. Initial conditions are sampled
from U(−0.2, 0.2).

Thus, SOL can achieve comparable results to ADP without
the requirement of an initially stable controller. In fact, ob-
taining an initially stable controller for ADP within a larger
vicinity of the equilibrium point poses a significant challenge.
Consequently, for a broader range of domains, ADP may
yield extremely high costs, whereas SOL can still converge
successfully. This is shown in Figure 6 where we widen the
distribution of initial conditions to U(−0.5, 0.5).
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Fig. 6: Control cost curves for SOL and ADP on the cartpole
environment averaged over 100 trajectories. The flat line
region of ADP indicates that the agents have gone out of
bounds. The shaded area indicates one standard deviation.
Initial conditions are sampled from U(−0.5, 0.5).

We finally compare the performance of PPO and SOL on
the quadrotor environment, shown in Figure 7. Due to the
requirement of an initial stable controller for ADP and the
complexity that the quadrotor environment poses, no imple-
mentation was attempted. PPO shows high control costs and
its trajectory goes out of bounds, whereas SOL returns a stable
controller that converges to the equilibrium point.
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Fig. 7: Control cost curves for each algorithm on the quadrotor
environment averaged over 100 trajectories. The flat line
region of PPO indicates that the agents have gone out of
bounds. The shaded area indicates one standard deviation.

B. Hyperparameters for PPO

Hyperparameter Value
Horizon (T) 1500

Actor learning rate 3e-04
Critic learning rate 1e-03

Num. epochs 10
Minibatch size 64
Discount (γ) 0.99

GAE parameter (λ) 0.95

TABLE IV: Hyperparameters for PPO
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XI. EXAMPLES: DYNAMICS OF SYSTEMS

A. Example 1. (Linear System)

Consider the following linear system

ẋ =

 0 1 0
0 0 1
−0.1 −0.5 −0.7

x+

00
1

u, (40)

taken from [14]. The objective is defined by choosing Q = I3
and R = 1.

1) Example 2. (Inverted Pendulum): The state space de-
scription of the system is given as

ẋ1 = x2,

ẋ2 =
g

l
sin(x1)−

k

ml2
x2 +

u

ml2
, (41)

where m = 0.1kg, l = 0.5m, k = 0.1, and g = 9.8m/s2.
The performance criteria are defined by the choices of Q =
diag([1, 1]), R = 2.

2) Example 3. (Cartpole): The dynamics are given as

ẋ1 = x2,

ẋ2 =

−u cos(x1)−mLx22 sin(x1) cos(x1) + (M +m)g sin(x1)

L(M +m sin(x1)2)
,

ẋ3 = x4,

ẋ4 =
u+m sin(x1)(Lx

2
2 − g cos(x1))

M +m sin(x1)2
, (42)

where the state vector is composed of the angle of the
pendulum from the upright position, the angular velocity,
and the position and velocity of the cart, with m = 0.1kg,
M = 1kg, L = 0.8m, and g = 9.8m/s2. Moreover, we
choose Q = diag([60, 1.5, 180, 45]), R = 1.

3) Example 4. (Quadrotor Model): The nonlinear dynam-
ics of the quadrotor can be written as

ẏ = v,

v̇ =

 0
0
−g

+
1

m
R

00
T

 ,
Ṙ = RQ(ω),

ω̇ = J−1(−ω × Jω + τ), (43)

where the states include the 3D position y, the linear velocity
v of the center of gravity in the inertial frame, the rotation
matrix R, and the angular velocity ω in the body frame with
respect to the inertial frame. It should be noted that the third
equation is written in a matrix form, where R takes value in
the special orthogonal group SO(3) = {R ∈ R3×3|R−1 =
RT , det(R) = 1}. Accordingly, the attitude of the quadrotor
χ =

[
ϕ θ ψ

]
can be extracted from R at any time instance,

which contains the roll, pitch, and yaw angles, respectively.
The inputs of this system are given by the moments in the

body frame

τ =

CT d(−ω̄2
2 − ω̄2

4 + ω̄2
1 + ω̄2

3)
CT d(−ω̄2

1 + ω̄2
2 + ω̄2

3 − ω̄2
4)

CD(ω̄2
2 + ω̄2

4 − ω̄2
1 − ω̄2

3)

 ,

and the thrust

T = CT (ω̄
2
1 + ω̄2

2 + ω̄2
3 + ω̄2

4)

generated in the body frame by the rotors, where ω̄i, d, CT ,
and CD denote the rotational speed of each rotor, the arm
length, the lift, and the drag coefficients of the propellers,
respectively. Model coefficients are given in Table V.

Value[unit] Value[unit]
m 0.33 [Kg] d 39.73× 10−3[m]
Ixx 1.395× 10−5[Kg×m2] CT 0.2025
Iyy 1.436× 10−5[Kg×m2] CD 0.11
Izz 2.173× 10−5 [Kg×m2] g 0.98[m/s2]

TABLE V: The coefficients of the simulated Crazyflie
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