
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Physics-Informed Neural Network Policy Iteration:
Algorithms, Convergence, and Verification

Anonymous Authors1

Abstract
Solving nonlinear optimal control problems
is a challenging task, particularly for high-
dimensional problems. We propose algorithms for
model-based policy iterations to solve nonlinear
optimal control problems with convergence guar-
antees. The main component of our approach is
an iterative procedure that utilizes neural approx-
imations to solve linear partial differential equa-
tions (PDEs), ensuring convergence. We present
two variants of the algorithms. The first variant
formulates the optimization problem as a linear
least square problem, drawing inspiration from ex-
treme learning machine (ELM) for solving PDEs.
This variant efficiently handles low-dimensional
problems with high accuracy. The second variant
is based on a physics-informed neural network
(PINN) for solving PDEs and has the potential to
address high-dimensional problems. We demon-
strate that both algorithms outperform traditional
approaches, such as Galerkin methods, by a signif-
icant margin. We provide a theoretical analysis of
both algorithms in terms of convergence of neural
approximations towards the true optimal solutions
in a general setting. Furthermore, we employ for-
mal verification techniques to demonstrate the
verifiable stability of the resulting controllers.

1. Introduction
Reinforcement learning in discrete environments has
achieved remarkable success over the past decade, from
AlphaGo (Silver et al., 2017) to the recent breakthrough
of GPT-3 (Ouyang et al., 2022), which uses reinforcement
learning (Schulman et al., 2017) from human feedback to
fine-tune large language models. However, reinforcement
learning in continuous environments, where states and ac-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tions evolve continuously in both space and time, remains a
challenge (Duan et al., 2016). Theoretically speaking, when
considering continuous-time scenarios, the discrete-time
Bellman equation is replaced by a nonlinear partial differen-
tial equation (PDE) known as the Hamilton–Jacobi–Bellman
(HJB) equation. Solving and analyzing this equation, in gen-
eral, becomes a complex task due to its intricate nature. One
major challenge arises from the possibility that the optimal
cost function may not be differentiable, even for relatively
straightforward problems (Bertsekas, 2015). In such cases,
one has to resort to viscosity solutions (Crandall et al., 1984)
to study HJB equations.

A rich literature exists on policy iteration techniques for
obtaining suboptimal solutions to the HJB equations (Leake
& Liu, 1967; Saridis & Lee, 1979; Beard, 1995; Beard
et al., 1997; 1998). One notable approach is to construct
successive approximations to solutions of the so-called Gen-
eralized Hamilton-Jacobi-Bellman (GHJB) equation, which
is a linear PDE and potentially easier to solve. Galerkin ap-
proximations for solving the GHJB are proposed in (Beard
et al., 1997; 1998) and have proven effective for solving low-
dimensional problems. However, such approaches do not
scale well to high-dimensional problems. Indeed, Galerkin
methods are known to suffer from the curse of dimensional-
ity.

Motivated by recent successes in solving PDEs using neural
networks (Raissi et al., 2019; Huang et al., 2006; Chen et al.,
2022; Han et al., 2018; Sirignano & Spiliopoulos, 2018;
Weinan et al., 2021) and the potential of neural networks to
overcome the curse of dimensionality (Poggio et al., 2017),
we set out to revisit the policy iteration approach by solving
GHJB equations using neural networks. The main goal is to
answer the following questions:

1. Can neural approximations of the solutions to GHJB
converge to the viscosity solution of the HJB equation?

2. Can neural approximations efficiently compute solu-
tions of the HJB with high accuracy?

3. Can neural policy iteration overcome the curse of di-
mensionality?

4. Can neural approximations be guaranteed to lead to

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Physics-Informed Neural Network Policy Iteration

stabilizing controllers?

The answers to these questions are all positive to some
degree. The main contributions of this paper are as follows:

1. We prove that policy iteration indeed converges to vis-
cosity solutions of the HJB equation.

2. We propose two variants of neural policy iteration.
The first, inspired by the Extreme Learning Ma-
chine (Huang et al., 2006) and termed ELM-PI, can
achieve remarkable accuracy and efficiency on low-
dimensional problems. The second, based on Physics-
Informed Neural Networks (PINN) (Raissi et al., 2019)
for solving PDEs, has been shown to scale better than
ELM-PI as dimensions increase.

3. We formulate formal verification problems for the re-
sulting controllers to verify their stability. We show
with a simple example that seemingly convergent re-
sults can lead to unstable controllers, which necessitate
the use of formal verification when safety is a concern.

Related work: (1) The idea of policy iteration in the con-
text of designing optimal stabilizing controllers has a long
history. For linear systems, this reduces solving an alge-
braic Riccati equation (ARE), which is quadratic in the
unknown matrix, into a sequence of Lyapunov equations,
which are linear and easier to solve. The algorithm is known
as Kleinman’s algorithm (Kleinman, 1968). In the nonlinear
case, this procedure reduces the nonlinear HJB equation to
a sequence of linear PDEs that characterize the value (and
Lyapunov) functions for the stabilizing controllers obtained
at each iteration of policy evaluation. This result dates back
at least to 1960s (Milshtein, 1964; Vaisbord, 1963) and fol-
lowed by (Leake & Liu, 1967; Saridis & Lee, 1979; Beard,
1995; Jiang & Jiang, 2017; Bhasin et al., 2013; Vrabie &
Lewis, 2009; Jiang & Jiang, 2012; 2014) and many others.
To the best knowledge of the authors, however, none of
these works establish the convergence of policy iteration to
viscosity solutions (Crandall et al., 1984) of the HJB equa-
tion, especially when function approximators are involved.
Furthermore, classical computational approaches, such as
Galerkin methods, for solving PDEs often do not scale well.

(2) We draw significant inspiration from recent work on neu-
ral networks for solving PDEs (Raissi et al., 2019; Huang
et al., 2006; Chen et al., 2022; Han et al., 2018; Sirignano
& Spiliopoulos, 2018) (see the recent survey (Weinan et al.,
2021) and discussions on the potential for machine learn-
ing to overcome the curse of dimensionality when solving
PDEs). To the best of our knowledge, no previous work has
reported the use of neural PDE solving for policy iterations
in the context of nonlinear optimal control on benchmark
problems. We address these gaps in this paper.

2. Problem formulation
We consider a class of optimal control problems subject to
control-affine dynamical systems of the form

ẋ = f(x) + g(x)u, (1)

where f : Rn → Rn is a continuously differentiable vector
field and g : Rn → Rn×m is smooth, x ∈ Rn is the state,
u ∈ Rm is the control input. We also assume that f(0) = 0.

We are interested in the case where the maximal interval of
existence is [0,∞) for admissible controls. For simplicity,
in the context of infinite-horizon trajectory, we overload
the notation u as the control signal, i.e. u : [0,∞) → Rm.
Subject to the control u, the unique solution starting from
x0 is denoted by ϕ(t;x0, u). We may also write the solution
as ϕ(t) or ϕ, if the rest of the arguments are not emphasized.

LetR be a symmetric and positive definite matrix. Introduce
L(x, u) = Q(x) + ∥u∥2R, where Q : Rn → R is a sym-
metric and positive definite function, and ∥u∥R = uTRu,
where R : Rn → Rm×m is also symmetric and positive
definite. The associated cost is then commonly defined as:

J(x, u) =

∫ ∞

0

L(ϕ(s;x, u), u(s))ds. (2)

Definition 2.1 (Admissible Controls). Given a subset Ω ⊆
Rn containing the origin. A control u : Ω → Rm is ad-
missible on Ω, denoted as u ∈ U(Ω) or simply u ∈ U , if
(1) u is Lipschitz continuous on Ω; (2) u(0) = 0; (3) u is
a stabilizing control, i.e., limt→∞ |ϕ(t;x0, u)| = 0 for all
x0 ∈ Ω; and (4) J(x0, u) <∞.

Let V : Rn → R be the value function for this problem,
i.e.,

V (x) := inf
u∈U

J(x, u). (3)

We aim to find V as well as the associated optimal control
u∗. If we introduce

G(x, u, p) := L(x, u) + p · (f(x) + g(x)u), (4)

where p ∈ Rn, and define the Hamiltonian

H(x, p) = sup
u∈Rm

−G(x, u, p), (5)

then V is generally a viscosity solution (see Appendix A for
a formal definition) within C(Ω) to the HJB equation

H(x,DV (x)) = 0. (6)

We show this in the proof of Proposition 2.4.

Remark 2.2. Basic properties of viscosity solutions are
discussed in Appendix A. The concept of viscosity solution
relaxes C1 solutions. Note that, at differentiable points,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Physics-Informed Neural Network Policy Iteration

DV (x) exists and {DV (x)} = ∂+V (x) = ∂−V (x). In
this case, to justify a viscosity solution, we can simply
substitute DV (x) and check if F (x, V (x), DV (x)) = 0
pointwise. If V is not differentiable at a given point,
then we have to go through the conditions in Definition
A.1 to verify that V is a viscosity solution. A classical
example is that V (x) = 1 − |x|, x ∈ R, is a viscos-
ity solution to |DV | − 1 = 0 with boundary conditions
V (−1) = V (1) = 0. To verify this, we only have to check
if (1) and (2) in Definition A.1 are satisfied at 0.

We also provide the following nice properties and complete
the proofs in Appendix B.

Proposition 2.3 (Dynamic Programming Principle). For all
x ∈ Rn and t > 0,

V (x) = inf
u∈U

{∫ t

0

L(ϕ(s;x, u), u(s))ds+ V (ϕ(t;x, u))

}
.

(7)

Proposition 2.4 (Uniqueness of Viscosity Solution). The
V defined in (3) is the unique viscosity solution of
H(x,DV (x)) = 0.

Theorem 2.5 (Optimal Feedback Control). Let κ : Ω →
Rm be locally Lipschitz continuous. Suppose that u∗(·) :=
κ(ϕ(·)) and u∗ ∈ U . If V is the viscosity solution of
G(x, κ(x), DV (x)) = 0, then J(x, κ(ϕ(·))) = V (x).

Note that G(x, u, p) is minimized given that u(x) =
− 1

2R
−1gT (x)pT . With this, the HJB equation reduces to

H(x,DV (x)) =−Q(x)−DV (x) · f(x)

+
1

4
DV (x)g(x)R−1gT (x)(DV (x))T .

(8)

We can either numerically solve the nonlinear PDE (8) or
use policy iteration to approximate V and the optimal con-
troller. The conventional policy iteration (Bardi et al., 1997;
Jiang & Jiang, 2017) assumes that V ∈ C1(Ω) and seeks
C1 solutions Vi to the GHJBs Gi(x, ui, DVi(x)) = 0 for
each i ∈ {0, 1, · · · }, where ui = − 1

2R
−1gT (x)DVi(x) for

i ∈ {1, 2, · · · } and u0 ∈ U . The convergence value function
V∞ is expected to solve (8) and ui → u∗ at least pointwise
(Theorem 3.1.4, Jiang & Jiang, 2017). The numerical solu-
tion of GHJBs, which are linear, is commonly believed to
be achieved more easily.

However, the continuous differentiability (on Ω) of {Vi}
and V are assumed without justification (Bardi et al., 1997;
Jiang & Jiang, 2017), leading to uncertainty regarding the ap-
plicability of the obtained results. Even though Vi ∈ C1(Ω)
for all i, the limit V∞ w.r.t. the uniform norm in (Theo-
rem 3.1.4, Jiang & Jiang, 2017) may not be continuously
differentiable, and hence may not be the approximation of
V ∈ C1(Ω). Motivated by this, we characterize solutions to

GHJB equations and demonstrate in Section 3.1 that the ex-
act policy iteration based on viscosity solutions converges to
the viscosity solution of the HJB. The convergence analysis
differs from the conventional case. Based on this analysis,
we show in Section 3 that the neural policy iteration algo-
rithms, ELM-PI and PINN-PI, also converge to viscosity
solutions under less restrictive assumptions. The algorithms
will be presented in Section 3, and the convergence analysis
will be discussed in Section 4.

3. Algorithms
3.1. Exact policy iteration

To begin, we provide an overview of the theoretical foun-
dation of policy iteration. Policy iteration (PI) originates
optimal control of Markov decision processes (MDP) (Bell-
man, 1957; Howard, 1960) (additional references can be
found in recent texts and monographs (Bertsekas, 2012;
2019)). In this section, we present a fundamental version of
PI for the system (1) with the cost (2). The algorithm dates
back to the 1960s (Leake & Liu, 1967; Milshtein, 1964;
Vaisbord, 1963; Kleinman, 1968), and its convergence is
established in various sources (Saridis & Lee, 1979; Beard,
1995; Milshtein, 1964; Vaisbord, 1963; Jiang & Jiang, 2017;
Farsi & Liu, 2023). However, all these proofs rely on strong
assumptions on the smoothness of the optimal value func-
tion, which may or may not be satisfied in general by the
solutions to the HJB equation associated with the optimal
control problem. To illustrate this, consider the bilinear
scalar problem ẋ = xu, with Q(x) = x2 and R = 1. The
optimal value function is V (x) = 2 |x|, which fails to be
differentiable at x = 0. We provide a regularity analysis
in the general setting where viscosity solutions are allowed
(see Section 4).

We now define policy iteration with exact solutions to PDEs,
which we refer to as exact-PI. This process begins with an
initial policy u = κ0(x), where κ0(0) = 0. This initial
policy is assumed to be an admissible controller. For each
i ≥ 0, exact-PI performs the following two steps iteratively:

1. (Policy evaluation) Compute a value function Vi(x) at
all x ∈ Ω \ {0} for the policy κi by solving the GHJB

Gi(x, κi(x), DVi(x)) :=Q(x) + κTi (x)R(x)κi(x)

+DVi(x)(f(x) + g(x)κi(x))

=0.

(9)

We set Vi(0) = 0 for all i ≥ 0.

2. (Policy improvement) Update the policy

κi+1(x) =

{
− 1

2R
−1gT (x)(DVi(x))

T , if x ̸= 0;
0 otherwise.

(10)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Physics-Informed Neural Network Policy Iteration

The exact-PI algorithm is impractical because exact solution
of the linear PDE (9) is generally unavailable. In the follow-
ing sections, we propose two algorithms for neural policy
iterations by solving this PDE iteratively using function
approximators.

3.2. ELM-PI via linear least squares

The first algorithm uses a one-layer function of the form

V̂ (x) := V (x;β) = βTσ(Wx+ b), (11)

where β ∈ Rm, W ∈ Rm×n, b ∈ Rm, and σ : R → R is
an activation function applied element-wise. It can be easily
verified that the gradient of V with respect to x takes the
form

DV (x;β) = βT diag(σ′(Wx+ b))W, (12)

where diag maps the m-vector σ′(Wx + b) to an m ×m
diagonal matrix and σ′(·) is the derivative of σ applied
element-wise.

We will briefly describe how to solve a PDE via optimization
in this paragraph. Suppose we would like to solve a PDE
H(x,DV) = 0. A general idea for solving a PDE via
optimization is to collect a number of collocation points
{xs}Ns=1, on which we evaluate the derivative DV (x;β) of
a parameterized, potential solution V (x;β) and formulate
the residual loss with mean squared error (MSE) as

Loss(β)

=
1

N

N∑
s=1

H(xs, DV (xs;β))
2 + λ

Nb∑
p=1

(V (yp;β)− V̂ (yp))
2,

(13)

where λ > 0 is a weight parameter, the points {yp}Nb

p=1 are

boundary points and V̂ (yp) describes the boundary value at
these points.

To efficiently solve (9) by (11), the main idea is to random-
ize W and b and then fix them when optimizing Loss(β)
defined by (13). Due to the linearity of V (x;β) in β, the
linearity of the PDE (9), and definition of Loss(β) by (13),
we obtain a linear least square optimization problem, which
can be solved efficiently and accurately for moderate sized
problems. We call this ELM-PI1 and describe it in Algo-

1We choose the name ELM-PI over LS-PI because we essen-
tially solve the PDE via a similar architecture to an extreme learn-
ing machine (ELM) (Huang et al., 2006) for solving PDEs (Dong
& Li, 2021). LS-PI in fact exists in the literature for solving control
problems with finite state and action spaces (Lagoudakis & Parr,
2003) where PDE solving is irrelevant. Here we want to address
the more difficult problem of solving continuous control problems
with continuous state and action spaces, where PDE solving seems
inevitable if one is to compute the optimal solutions.

rithm 1. Here, the boundary condition2 is simply V (0) = 0,
because the the origin is an equilibrium point without u = 0.
From (9), (11), and (12), the loss function of β reduces to

Loss(β)

=
1

N

N∑
s=1

H(xs, β
T diag(σ′(Wx+ b))W)2 + λ(βTσ(b))2,

(14)

where H is given by the left-hand side of (9) and linear in
DV . Hence minimizing (14) with β is a linear least square
problem.

From our experiments, it appears immaterial whether Steps
2 and 3 of Algorithm 1 are placed within or outside of the
loop. In other words, we can use the same set of parameters
W and b as well as the set of collocation points for all
iterations.

3.3. PINN-PI via physics-informed neural network

Physics-informed neural networks (PINN) (Raissi et al.,
2019) are a popular method for solving PDEs. We propose
a variant for performing physics-informed neural policy
iteration in this subsection.

For each i, instead of assuming that a solution Vi(x) to
Equation (9) takes the form (11), we consider a more general
approach by assuming it to be a neural network function:

V̂i(x) := Vi,NN(x; θ), (15)

where Vi,NN represents a feedforward neural network with
potentially multiple layers and nonlinear activation func-
tions. In this formulation, θ represents the parameters of the
neural network, allowing for a flexible and adaptable repre-
sentation of the solution Vi(x). Even with just one hidden
layer, the PINN approach would be allowed to change all
parameters in the optimization process, leading to a non-
convex optimization problem. Gradient descent methods
are usually used to solve these large-scale non-convex opti-
mization problems.

Similar to ELM-PI, at each iteration, we choose a set of
collocation points {xs}Ns=1, evaluate the derivatives DVi,NN
of Vi,NN at these points using automatic differentiation, and
form a residual loss

Loss(θ) =
1

N

N∑
s=1

H(xs, DVi,NN(xs; θ))
2+λ(Vi,NN(0; θ))

2,

(16)
which is in general a non-convex function of θ.

We describe PINN-PI in Algorithm 2.

2Alternatively, in this setting, we can simply set V (0) = 0 by
subtracting a nonzero V (0) as a bias term. This does not affect
the subsequent controller.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Physics-Informed Neural Network Policy Iteration

Algorithm 1 Extreme Learning Machine Policy Iteration
(ELM-PI)

Require: f , g, Q, R, k0, Ω, N , m
1: repeat
2: Generate random W and b
3: Generate random {xs}Ns=1 ⊆ Ω
4: Finding β that minimizes (14) to form Vi from (11)
5: Update κi+1 according to (10)
6: i = i+ 1
7: until desired accuracy max iterations reached

Algorithm 2 Physics-Informed Neural Network Policy Iter-
ation (PINN-PI)

Require: f , g, Q, R, k0, Ω, Vi,NN(x; θ)
1: repeat
2: Generate random {xs}Ns=1 ⊆ Ω
3: repeat
4: Run gradient descent on θ with (16)
5: until desired accuracy or max epochs reached
6: Form Vi(x) from Vi,NN(x; θ)
7: Update κi+1 according to (10)
8: i = i+ 1
9: until desired accuracy or max iterations reached

A natural question to ask is when to terminate the algorithm.
Clearly, there is no guarantee that gradient descent will find
a global minimum θ∗ for (16). Even if it does, the resulting
Vi,NN(x; θ

∗) will not satisfy (9) precisely. What one can
hope for is that when the observed loss is sufficiently small
and the number of iterations become large, Vi,NN(x; θ

∗),
where θ∗ is a returned minimizer, can approximate the op-
timal solution to an arbitrary precision. In Section 4, we
provide a convergence analysis and further discussion on
this issue. In practice, the algorithm will terminate when
either a desired accuracy is reached or a predetermined num-
ber of iterations is completed. In such cases, due to the
approximation errors, it is unclear whether the resulting con-
troller is stabilizing. We provide a verification framework
to address this issue, which we discuss in Section 3.5.

3.4. Loss term to ensure local stability is preserved
across iterations

Based on our observations, training optimal controllers for
high-dimensional systems remains extremely challenging.
In fact, most state-of-the-art reinforcement learning algo-
rithms, whether model-free or model-based, struggle to
solve the benchmark control problems we chose with stabil-
ity guarantees, even in a small region around the equilibrium
point to be stabilized (such as cartpole and quadrotors).

Through our extensive testing (see Table 1 in Appendix E),

we found that ELM-PI excels in solving low-dimensional
problems with high accuracy and fast solver time. However,
PINN-PI scales better with state dimensions. Hence, we fo-
cus on the PINN-PI algorithm for high-dimensional control
problems.

When naively implemented, PINN-PI can also lead to unsta-
ble controllers. This is because the loss function (16) does
not capture the stabilization requirement of the resulting
controller

κ̂i+1(x) = −1

2
R−1gT (x)(DVi,NN(x))

T . (17)

To overcome this issue, we draw inspiration from classical
control theory. When f(x) = Ax and g(x) = B, the
exact-PI algorithm is nothing but a sequence of Lyapunov
equations that can be used to iteratively solve the algebraic
Riccati equation. Given the assumptions on f and g, locally
(1) is approximated by ẋ = Ax + Bu, where A = Df(0)
and g(0) = B.

We examine the linear approximation of k̂ and quadratic
approximation of Vi,NN(x) around the origin. Assume
∇2Q(0) = Q̂ > 0 and let R̂ = R(0). Furthermore, suppose
that, for each i ≥ 0, the controller k̂i is exponentially sta-
bilizing and denote K̂i := Dk̂i(0). Write Âi = A+BK̂i.
Since Âi is Hurwitz, by linear system theory, there exists a
quadratic function P̂ that solves the Lyapunov equation

P̂iÂi + ÂT
i P̂i = −Q̂− K̂T

i R̂K̂i. (18)

Comparing this with (9), we expect the quadratic part of
Vi,NN(x) to be approximated by xT P̂ x near the origin and
the next neural controller κ̂i+1(x) is well approximated by
a linear controller K̂i+1x near the origin with

K̂i+1 = −R−1BT P̂i, (19)

which is precisely the gain update required for policy im-
provement for linear systems. Hence we expect that

K̂i+1 = Dκ̂i+1(0). (20)

In view of (17), this can be easily encoded as a loss term∣∣∣∣ ∂∂x (−1

2
R−1gT (x)(DVi,NN(x))

T)
∣∣
x=0

− K̂i+1

∣∣∣∣
F

(21)

where |·|F is the Frobenius norm and Ki+1 is solved by (19)
and (18). This loss term plays a significant role in stabiliz-
ing the training process of PINN-PI for high-dimensional
systems.

3.5. Verification of stability via neural Lyapunov
functions

Upon termination of Algorithms 1 or 2, we obtain an ap-
proximation V̂ (x) of the optimal value function. A corre-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Physics-Informed Neural Network Policy Iteration

sponding approximate optimal control is given by

u = κ̂(x) =

{
− 1

2R
−1gT (x)(DV̂ (x))T , if x ̸= 0;

0 otherwise.
(22)

For either Algorithms 1 or 2, DV̂ can be readily computed,
and is a function involving nonlinear activation functions
and possible compositions of them when using multi-layer
neural networks in Algorithm 2.

Suppose that the algorithms terminate perfectly as in the
exact-PI case, we have V̂i+1(x) = V̂i(x) = V (x) and
κ̂i+1(x) = κ̂i(x) = κ(x). We obtain from (9) that

DV (x)(f + g(x)κ(x))

=−Q(x) + κT (x)R(x)κ(x) < 0, x ̸= 0,
(23)

provided that Q(x) is positive definite. However, because
of the use of function approximators, we cannot obtain
(23). Instead, we use a satisfiability modulo theories (SMT)
solver (Gao et al., 2013) to verify the following nonlinear
inequality

DV̂ (x)(f + g(x)κ̂(x)) ≤ −µ, x ∈ Ω \ Uε, (24)

where Uε is a small neighborhood around the origin of ra-
dius ε > 0, and µ > 0 is a small constant. While checking
the exact satisfaction of inequality (23) is in general unde-
cidable, there exist delta-complete SMT solvers (Gao et al.,
2013) that can either verify the inequality or falsify a δ-
weakened version of it, where δ > 0 can be any arbitrary
precision parameter. To use such tools, it is necessary to
exclude a small neighborhood of the origin (Chang et al.,
2019; Zhou et al., 2022), as (23) turns into an equation at the
origin. It is worth noting that, with additional assumptions,
one may be able to verify exact stability including the origin
through examination of the derivatives of the vector fields
(Liu et al., 2023b). In this paper, we verify the stability
given the controllers generated from Algorithms 1 and 2 us-
ing (24) for a Uε with some small ε > 0, which ensures that
solutions are attracted to any prescribed small neighborhood
of the origin. Note that, by the continuity (or smoothness)
of the approximators, for sufficiently small ε > 0, we can
also have

DV̂ (x)(f+g(x)κ̂(x)) ≤ −µ+O(ε) < 0, x ∈ Uε\{0},
(25)

where O(ε) → 0 as ε→ 0. Assuming that a suitable value
for ε can be chosen, such that both (24) and (25) hold, the
stability can be verified using neural Lyapunov functions.

4. Convergence analysis
We state the main regularity and convergence results in this
section. The proofs can be found in Appendix C.

4.1. Convergence analysis for exact-PI

In view of Proposition 2.4, we expect that each policy evalu-
ation in exact-PI has a unique solution so that the algorithm
eventually yields a meaningful outcome. We first establish
that each GHJB in exact-PI possesses a unique viscosity
solution characterized by a specific pattern.
Proposition 4.1. Let u ∈ U be any (autonomous) state
feedback controller so that there exists some feedback
policy κ : Rn → R such that u(·) = κ(ϕ(·)). Then
the infinitesimal dynamic −G(x, u,DV (x)) = 0 has a
unique positive definite viscosity solution within the space
C(Ω) ∩ C1(Ω \ {0}).
Corollary 4.2. For each i ≥ 0, the GHJB
Gi(x, κi(x), DVi(x)) = 0 has a unique positive definite
viscosity solution Vi, which belongs to C(Ω)∩C1(Ω\{0}).
Remark 4.3. Note that in the situation where the state feed-
back controller u is not necessarily stabilizing, but (1)(2)(4)
of Definition 2.1 still hold and f(x) + g(x)u has countable
zeros, the above existence and uniqueness of viscosity so-
lution still follow. However, this discussion is beyond the
scope of this paper.

The following theorem states that exact-PI converges to the
true solution to (8).
Theorem 4.4 (Convergence of Successive Approximations
of Viscosity Solution). For each i ≥ 0, let ui(·) = κi(ϕ(·)),
where κi is defined in (10). Suppose that u0 ∈ U , then,

(1) ui ∈ U for all i ∈ {0, 1, · · · }.

(2) V ∗ ≤ Vi+1 ≤ Vi for all x ∈ Ω and for all
i ∈ {0, 1, · · · }, where Vi is the viscosity solution to
Gi(x, κi(x), DVi(x)) = 0 and V ∗ is the viscosity so-
lution to (8).

(3) Vi → V ∗ uniformly on Ω as i → ∞ given the com-
pactness of Ω.

4.2. Convergence analysis for policy iteration using
neural approximations

The main idea is to formalize properties of the loss function
that capture the desired convergence of neural approxima-
tions to true solutions, which in this context are the viscosity
solutions to the GHJB and HJB equations. We expect that
when the training error (or the loss function in (14) or (16))
is small, the generalization error is also small. In practice,
this requires that the number of collocation points chosen
from Ω, at which the residual of each GHJB Gi is evaluated,
be sufficiently large.

However, based on Corollary 4.2, the viscosity solution
for each iteration does not exhibit uniform differentiability
across the entire domain of Ω. In addition, most conver-
gence results for data-driven methods are typically based

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Physics-Informed Neural Network Policy Iteration

on a compact subset of the state space. Therefore, direct
consideration of C1-uniform convergence on Ω \ {0} is not
feasible. Instead, we achieve the C1-uniform convergence
on Ω \ Uε and a weaker (asymptotic) convergence on Uε,
where Uε is some open set centered at 0 of arbitrarily small
radius ε > 0.

To circumvent complex notation, let us consider the general
case for any GHJB G(x, κ(x), DV (x)) = 0 with admissi-
ble κ as in Proposition 4.1 to illustrate the idea. Focusing on
Ω \Uε, we consider the space of continuously differentiable
functions G = C1(Ω\Uε,R) equipped with theC1-uniform
norm, |V |C1 := supx∈Ω\Uε

|V (x)|+ supx∈Ω\Uε
|DV (x)|.

We consider a training error ET,N : G → [0,∞) of the
following form (e.g. the loss function in (14) and (16)),

ET,N (V) =
1

N

N∑
k=1

|G(xk, κ(xk), DV (xk))|2 + |V (0)|2 ,

where N ∈ N is associated with the number of collo-
cation points chosen from Ω. We seek approximations
{V̂N}N∈N ⊆ F of the unique viscosity solution V in some
function space F ⊆ G, for instance, the space of func-
tions representable by a one hidden-layer network. Then,
we aim to determine whether ET,N (V̂N) → 0 implies
V̂N → V in G.

Continuing the above settings, in the following proposition,
we state that by incorporating additional assumptions, a
convergence result can be obtained on Ω \ Uε.

Hypothesis 4.5. For any Lipschitz continuous function h
and its smooth neural approximations {ĥN}N∈N, the Lips-
chitz constant of ĥN converges to the true Lipschitz constant

as 1
N

∑N
k=1

∣∣∣ĥ(xk))∣∣∣2 converges to 0.

Remark 4.6. This phenomenon has been thoroughly inves-
tigated by (Khromov & Singh, 2023). For low-dimensional
systems, it is possible to also directly penalize the Lipschitz
constant of the residual and achieve higher accuracy (see
the proof of Proposition 4.7 for details). In contrast, when
the Lipschitz constant of the residual is difficult to verify, it
is reasonable to assume Hypothesis 4.5.

Proposition 4.7. Let ε > 0 any arbitrarily small number
and Uε be an open set centered at 0 of radius ε. Let F ⊆ G
be a subspace with uniformly bounded Lipschitz constant
on Ω \ Uε. Suppose that {xk}k∈N is a sequence dense on
Ω \ Uε with the additional requirement that, for all N ∈ N,

δN = inf
{
δ > 0 : Ω \ Uε ⊆

⋃N
k=1 B

Ω\Uε

δ (xk)
}

and C =

sup
{
Nµ(BΩ\Uε

δn
(x1)) : N ∈ N

}
< ∞ where µ is the

Lebesgue measure and BΩ\Uε

δ (x) is the open ball of radius
δ > 0 centered at x in Ω \ Uε.

Suppose that Hypothesis 4.5 holds and the training error
ET,N (V̂N) can be arbitrarily small for sufficiently large N .

Then, the neural network V̂N → V in G.

Remark 4.8. The additional requirement on {xk}k∈N indi-
cates that the smallest volume of the “finite coverings” on
Ω \ Uε is finite. As a technical matter, instead of using
the dense set {xk}, we can use a sequence of finite sets
AN := {xk}Nk=1 (as in Algorithm 2) that is “eventually
dense” in Rn, i.e. AN → X in the Hausdorff metric. This
would allow one to use new training points, as long as the
finite sets are good approximations of Rn.

By patching the above sound approximation on Ω \ Uε for
any small ε > 0 and the asymptotic approximation within
Uε, one can obtain the following convergence guarantee.

Theorem 4.9. Given κ0, let {Vi} and {κi+1} be updated
by exact-PI. Let {V̂i} and {κ̂i+1} be updated by PINN-PI
with κ̂0 = κ0. Let the conditions in Proposition 4.7 be held.
Then, for any i ≥ 0 and ϑ > 0, we can choose a sufficiently
dense set of collocation points {xk}Nk=1 such that

|V̂i(x)− Vi(x)| ≤ ϑ, |κ̂i+1(x)− κi+1(x)| ≤ ϑ, x ∈ Ω.

5. Numerical experiments
In this section, we present numerical examples to evaluate
the performance of the proposed algorithms. We aim to
accomplish three goals: 1) Evaluate the performance char-
acteristics of ELM-PI and PINN-PI, ranging from low to
high-dimensional systems; 2) Compare with approaches
in classical control literature and demonstrate the superior
performance of ELM-PI in solving low-dimensional sys-
tems and highlight the importance of formal verification; 3)
Demonstrate the superior capabilities of PINN-PI in solving
high-dimensional benchmark control problems and com-
pare it with state-of-the-art model-free and model-based
reinforcement learning algorithms.

5.1. Synthetic n-dimensional nonlinear control

Consider the nonlinear control problem given by fi(x) =
x3i + ui, where i = 1, 2, . . . , n. The cost is de-
fined by Q(x) =

∑n
i=1(x

2
i + 2x4i) and R = In.

From optimal control theory, the optimal value func-
tion is obtained by solving the HJB equation, giving
V ∗(x) =

∑n
i=1

(
1
2x

4
i +

1
2 (x

2
i + 1)2 − 1

2

)
. We run ELM-

PI and PINN-PI and compare their performance for various
dimensions n in terms of computational time and maximum
testing error relative to the true optimal value function. The
results are summarized in Table 1 in Appendix E.

From the experimental results, we see that for low-
dimensional problems (n ≤ 3), ELM-PI outperforms PINN-
PI in terms of both computational efficiency and approxima-
tion accuracy. As the dimension increases, more computa-
tional units (m) are required for ELM-PI to achieve a higher
accuracy. For example when n = 4, to achieve 10−3 accu-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Physics-Informed Neural Network Policy Iteration

racy, it requires m = 3200, and for 10−5, m = 6400. The
complexity of solving linear least square is O(mN2), pro-
vided that N > m. In our experiments, we set N = d ∗m.
Hence, the time complexity isO(d2m3), which roughly cap-
tures the increase in computational time reported in Table 1
as m and d increase. For n ≥ 5, it is evident that ELM-PI
becomes inefficient. In comparison, PINN-PI can achieve
10−2 to 10−3 accuracy across all dimensions within a rea-
sonable amount of computational time. In fact, we were
able to obtain 10−2 error with m = 800 across all dimen-
sions. The accuracy, however, does not seem to improve
significantly as m, N , or the number of steps increase in
training PINN-PI.

Based on these evaluations, we recommend to use ELM-
PI for low-dimensional problems and PINN-PI for high-
dimensional problems.

5.2. Inverted pendulum and comparison with successive
Galerkin approximations

We run both ELM-PI and PINN-PI to compute the optimal
control and policy for the inverted pendulum (see Section
E.3 in the Appendix for more details) Figure 1 in Appendix
E displays the results of implementing ELM-PI on an in-
verted pendulum. The value functions, projected onto x1,
are plotted for each iteration. The left panel represents the
scenario with m = 100 and N = 200, while the right panel
corresponds to m = 50 and N = 100. Despite the visual
similarity and apparent convergence after five iterations, it
is surprising that the controller obtained from m = 50 does
not actually stabilize the system. Conversely, we have ver-
ified that the controller derived from m = 100 is indeed
stabilizing using dReal (Gao et al., 2013). This example
demonstrates the justification for employing formal verifica-
tion alongside policy iteration to attain both optimality and
stability, particularly in safety-critical scenarios.

We also compare ELM-PI and PINN-PI with successive
Galerkin approximations for solving GHJB (Beard et al.,
1997) and provide further verification results. The conclu-
sion is that while successive Galerkin approximations (SGA)
can effectively solve low-dimensional problems, ELM-PI is
significantly superior in terms of solver time. Furthermore,
as demonstrated in the next section, PINN-PI can solve high-
dimensional problems that are beyond the reach of SGA.
Due to space limitations, detailed results are included in the
supplementary material.

5.3. Comparison with reinforcement learning
algorithms

We compare PINN-PI against well-established reinforce-
ment learning (RL) algorithms, including Proximal Policy
Optimization (PPO) (Schulman et al., 2017), Hamilton Ja-
cobi Bellman PPO (HJBPPO) (Mukherjee & Liu, 2023), and

Continuous Time Model-Based Reinforcement Learning
(CT-MBRL) (Yildiz et al., 2021). We train each algorithm
in benchmark control environments (inverted pendulum,
cartpole, 2D quadrotor, and 3D quadrotor) and compare
their control costs.

PPO is a model-free actor-critic algorithm that uses a clipped
objective function to limit policy updates, ensuring in-
cremental learning steps. It consists of an actor-network
πθ(a|s) that takes the state s as input and outputs a distribu-
tion over actions a, and a value network Vϕ(s) that takes the
state s as input and outputs the expected return. HJBPPO is
an extension of PPO that uses the continuous-time HJB equa-
tion as a loss function, instead of the discrete-time Bellman
optimality equation. CT-MBRL introduces a model-based
approach, employing continuous-time dynamics for more
precise control and prediction in RL tasks. While we are
aware there are other RL algorithms available in the liter-
ature, the rationale for choosing these RL algorithms for
comparison is given in Section F.1.

The comparison is presented in Appendix F. While the RL
algorithms exhibit comparable performance to PI-Policy
in the inverted pendulum environment, it is evident that
for higher-dimensional environments like the cartpole and
quadrotor, the RL algorithms struggle to achieve stability,
leading to their accumulated control cost diverging. PINN-
PI, on the other hand, demonstrates convergence to equi-
librium in less than two seconds, marking a significant im-
provement. This may appear striking at first, but being able
to encode local asymptotic stability as a loss (21) in training
plays an important role in achieving an asymptotically stabi-
lizing optimal controller, whereas other RL algorithms typi-
cally use episodic training over a finite time horizon. This
discrepancy explains the superior performance of PINN-PI
in problems where asymptotic stability is closely tied to the
performance criteria (think of LQR as a special case).

6. Conclusions
We propose two algorithms for conducting model-based pol-
icy iterations to solve nonlinear optimal control problems.
The first algorithm leverages the linearity of the PDE that
defines the policy value and utilizes linear least squares to
obtain the approximation. This approach proves to be highly
efficient and accurate for low-dimensional problems. The
second approach employs physics-informed neural networks
and demonstrates better scalability for high-dimensional
problems. We emphasize the importance of incorporating
formal verification on top of policy iterations to achieve both
optimality and stability when safety is a concern. We pro-
vide theoretical analysis that shows policy iterations (both
exact and approximate) converge to the true optimal so-
lutions in general settings. Limitations of this work and
potential future work are discussed in Section G.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Physics-Informed Neural Network Policy Iteration

7. Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bardi, M., Dolcetta, I. C., et al. Optimal control and vis-

cosity solutions of Hamilton-Jacobi-Bellman equations,
volume 12. Springer, 1997.

Beard, R. W. Improving the closed-loop performance of
nonlinear systems. PhD thesis, Rensselaer Polytechnic
Institute, 1995.

Beard, R. W., Saridis, G. N., and Wen, J. T. Galerkin ap-
proximations of the generalized hamilton-jacobi-bellman
equation. Automatica, 33(12):2159–2177, 1997.

Beard, R. W., Saridis, G. N., and Wen, J. T. Approximate
solutions to the time-invariant hamilton–jacobi–bellman
equation. Journal of Optimization theory and Applica-
tions, 96:589–626, 1998.

Bellman, R. E. Dynamic Programming. Princeton Univer-
sity Press, 1957.

Bertsekas, D. P. Dynamic Programming and Optimal Con-
trol: Volume I, volume 1. Athena Scientific, 2012.

Bertsekas, D. P. Value and policy iterations in optimal
control and adaptive dynamic programming. IEEE trans-
actions on neural networks and learning systems, 28(3):
500–509, 2015.

Bertsekas, D. P. Reinforcement Learning and Optimal Con-
trol. Athena Scientific, 2019.

Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis,
K. G., Lewis, F. L., and Dixon, W. E. A novel actor–critic–
identifier architecture for approximate optimal control of
uncertain nonlinear systems. Automatica, 49(1):82–92,
2013.

Camilli, F., Grüne, L., and Wirth, F. A generalization of
zubov’s method to perturbed systems. SIAM Journal on
Control and Optimization, 40(2):496–515, 2001.

Chang, Y.-C., Roohi, N., and Gao, S. Neural lyapunov con-
trol. Advances in Neural Information Processing Systems,
32, 2019.

Chen, J., Chi, X., Yang, Z., et al. Bridging tradi-
tional and machine learning-based algorithms for solv-
ing pdes: The random feature method. arXiv preprint
arXiv:2207.13380, 2022.

Crandall, M. G., Evans, L. C., and Lions, P.-L. Some prop-
erties of viscosity solutions of hamilton-jacobi equations.
Transactions of the American Mathematical Society, 282
(2):487–502, 1984.

Dong, S. and Li, Z. Local extreme learning machines and
domain decomposition for solving linear and nonlinear
partial differential equations. Computer Methods in Ap-
plied Mechanics and Engineering, 387:114129, 2021.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International conference on
machine learning, pp. 1329–1338. PMLR, 2016.

Evans, L. C. Partial Differential Equations, volume 19.
American Mathematical Society, 2010.

Farsi, M. and Liu, J. Reinforcement Learning. Wiley-IEEE
Press, 2023.

Gao, S., Kong, S., and Clarke, E. M. dreal: An smt solver
for nonlinear theories over the reals. In Proceedings of
24th International Conference on Automated Deduction,
pp. 208–214. Springer, 2013.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Howard, R. A. Dynamic Programming and Markov Process.
MIT Press, 1960.

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. Extreme learning
machine: theory and applications. Neurocomputing, 70
(1-3):489–501, 2006.

Jiang, Y. and Jiang, Z.-P. Computational adaptive opti-
mal control for continuous-time linear systems with com-
pletely unknown dynamics. Automatica, 48(10):2699–
2704, 2012.

Jiang, Y. and Jiang, Z.-P. Robust adaptive dynamic program-
ming and feedback stabilization of nonlinear systems.
IEEE Transactions on Neural Networks and Learning
Systems, 25(5):882–893, 2014.

Jiang, Y. and Jiang, Z.-P. Robust Adaptive Dynamic Pro-
gramming. John Wiley & Sons, 2017.

Khromov, G. and Singh, S. P. Some fundamental aspects
about lipschitz continuity of neural network functions.
arXiv preprint arXiv:2302.10886, 2023.

Kleinman, D. On an iterative technique for riccati equation
computations. IEEE Transactions on Automatic Control,
13(1):114–115, 1968.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Physics-Informed Neural Network Policy Iteration

Lagoudakis, M. G. and Parr, R. Least-squares policy it-
eration. The Journal of Machine Learning Research, 4:
1107–1149, 2003.

Leake, R. and Liu, R.-W. Construction of suboptimal control
sequences. SIAM Journal on Control, 5(1):54–63, 1967.

Liu, J., Meng, Y., Fitzsimmons, M., and Zhou, R. Physics-
informed neural network lyapunov functions: Pde char-
acterization, learning, and verification. arXiv preprint
arXiv:2312.09131, 2023a.

Liu, J., Meng, Y., Fitzsimmons, M., and Zhou, R. Towards
learning and verifying maximal neural lyapunov func-
tions. arXiv preprint arXiv:2304.07215, 2023b.

Meng, Y., Zhou, R., and Liu, J. Learning regions of attrac-
tion in unknown dynamical systems via zubov-koopman
lifting: Regularities and convergence. arXiv preprint
arXiv:2311.15119, 2023.

Milshtein, G. N. On an iterative technique for riccati equa-
tion computations. Automation and Remote Control, 25
(3):298–306, 1964.

Mukherjee, A. and Liu, J. Bridging physics-informed neural
networks with reinforcement learning: Hamilton-jacobi-
bellman proximal policy optimization (hjbppo). ICML
Workshop on New Frontiers in Learning, Control, and
Dynamical Systems, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao,
Q. Why and when can deep-but not shallow-networks
avoid the curse of dimensionality: a review. International
Journal of Automation and Computing, 14(5):503–519,
2017.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Saridis, G. N. and Lee, C.-S. G. An approximation theory of
optimal control for trainable manipulators. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9(3):152–159,
1979.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of Computational Physics, 375:1339–1364, 2018.

Vaisbord, E. M. Concerning an approximate method for
optimum control synthesis. Avtomatika i Telemekhanika,
24(12):1626–1632, 1963.

Vrabie, D. and Lewis, F. Neural network approach to
continuous-time direct adaptive optimal control for par-
tially unknown nonlinear systems. Neural Networks, 22
(3):237–246, 2009.

Weinan, E., Han, J., and Jentzen, A. Algorithms for solving
high dimensional pdes: from nonlinear monte carlo to
machine learning. Nonlinearity, 35(1):278, 2021.

Yildiz, C., Heinonen, M., and Lähdesmäki, H. Continuous-
time model-based reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 12009–
12018. PMLR, 2021.

Zhou, R., Quartz, T., De Sterck, H., and Liu, J. Neural
lyapunov control of unknown nonlinear systems with
stability guarantees. Advances in Neural Information
Processing Systems, 2022.

10

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Physics-Informed Neural Network Policy Iteration

A. Basic properties of viscosity solutions
The definition of viscosity solutions is given below.

Definition A.1. Define the superdifferential and the subdifferential sets of V at x respectively as

∂+V (x)

=

{
p ∈ Rn : lim sup

y→x

V (y)− V (x)− p · (y − x)

|y − x|
≤ 0

}
, (26a)

∂−V (x)

=

{
q ∈ Rn : lim inf

y→x

V (y)− V (x)− q · (y − x)

|y − x|
≥ 0

}
. (26b)

A continuous function V of a PDE of the form F (x, V (x), DV (x)) = 0 (possibly encoded with boundary conditions) is a
viscosity solution if the following conditions are satisfied:

(1) (viscosity subsolution) F (x, V (x), p) ≤ 0 for all x ∈ Rn and for all p ∈ ∂+V (x).

(2) (viscosity supersolution) F (x, V (x), q) ≥ 0 for all x ∈ Rn and for all q ∈ ∂−V (x).

The following lemma (Lemma 1.7, Lemma 1.8, Chapter I, Bardi et al., 1997) provides some insights on ∂+V (x) and
∂+V (x) for some V ∈ C(Ω).

Lemma A.2 (Sub- and Supperdifferential). Let V ∈ C(Ω). Then

(1) p ∈ ∂+V (x) if and only if there exists ψ ∈ C1(Ω) such that Dψ(x) = p and u− ψ has a local maximum at x;

(2) q ∈ ∂−V (x) if and only if there exists ψ ∈ C1(Ω) such that Dψ(x) = q and u− ψ has a local minimum at x;

(3) if for some x both ∂+V (x) and ∂−V (x) are nonempty, then ∂+V (x) = ∂−V (x) = {DV (x)};

(4) the sets {x ∈ Ω : ∂+V (x) ̸= ∅} and {x ∈ Ω : ∂−V (x) ̸= ∅} are dense.

In view of (1) and (2) in Lemma A.2, (1) and (2) in Definition A.1 are equivalent as

(1) for any ψ ∈ C1, if x is a local maximum for V − ψ, then F (x, ψ(x), dψ(x)) ≤ 0;

(2) for any ψ ∈ C1, if x is a local minimum for V − ψ, then F (x, ψ(x), dψ(x)) ≥ 0.

Definition A.3. Suppose V is locally Lipschitz. Define the classical upper and lower Dini (directional) derivatives,
respectively, as

D+V (x; p) = lim sup
t→0+

V (x+ tp)− V (x)

t
, (27a)

D−V (x; q) = lim inf
t→0+

V (x+ tq)− V (x)

t
. (27b)

The following theorem (Theorem 2.40, Chapter III, Bardi et al., 1997) states the equivalence of Dini solutions to viscosity
solutions to GHJBs. We rephrase the theorem as follows. We omit the proof due to the similarity.

Theorem A.4. Suppose Ω is a bounded open set, and V ∈ C(Ω̄). For GHJB G(x, u,DV (x)) = 0 with a fixed u ∈ U , the
following statements are equivalent:

(1) −G(x, u, p) ≤ 0 for all x ∈ Rn and for all p ∈ ∂+V (x) (respectively, ≥ 0);

(2) −L(x, u)−D+u(x; f(x) + g(x)u) ≤ 0 for all x ∈ Rn (respectively, ≥ 0).

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Physics-Informed Neural Network Policy Iteration

B. Proofs in Section 2
Proof of Proposition 2.3: Note that for all t > 0 and u ∈ U , we have

J(x, u) =

∫ t

0

L(ϕ(s;x, u), u(s))ds+

∫ ∞

t

L(ϕ(s;x, u), u(s))ds

=

∫ t

0

L(ϕ(s;x, u), u(s))ds+

∫ ∞

0

L(ϕ(s+ t;x, u), u(s+ t))ds

=

∫ t

0

L(ϕ(s;x, u), u(s))ds+ J(ϕ(t;x, u), u′)

≥ inf
u∈U

{∫ t

0

L(ϕ(s;x, u))ds+ V (ϕ(t;x, u))

}
,

where the controller u′ is defined as u′(s) := u(s+ t) for all s > 0. Taking the infimum over U , we have

V (x) ≥ inf
u∈U

{∫ t

0

L(ϕ(s;x, u), u(s))ds+ V (ϕ(t;x, u))

}
.

Not we fix a u ∈ U , an ε > 0, and choose a u′ ∈ U such that

V (ϕ(t;x, u)) ≥ J(ϕ(t;x, u), u′)− ε.

Let the controller u′′ be such that

u′′(s) =

{
u(s), s ≤ t,
u′(s− t), s > t.

Then,

V (x) ≤J(x, u′′)

=

∫ t

0

L(ϕ(s;x, u), u(s))ds+

∫ ∞

t

L(ϕ(s;x, u′′), u′′(s))ds

=

∫ t

0

L(ϕ(s;x, u), u(s))ds+

∫ ∞

0

L(ϕ(s;ϕ(t;x, u), u′), u′(s))ds

≤
∫ t

0

L(ϕ(s;x, u), u(s))ds+ V (ϕ(t;x, u)) + ε.

Since u and ε are given arbitrarily, by sending ε→ 0 and taking the infimum over U , we have

V (x) ≤ inf
u∈U

{∫ t

0

L(ϕ(s;x, u), u(s))ds+ V (ϕ(t;x, u))

}
,

which completes the proof.

Proof of Proposition 2.4: We first show that V is a viscosity solution using the equivalent conditions introduced in Appendix
A. Let ψ ∈ C1 and x be a local maximum point of V − ψ. Then

V (x)− V (z) ≥ ψ(x)− ψ(z), ∀z ∈ B(x, r),

where B(x, r) denotes the set {z ∈ Rn : |z − x| < r}. Consider any constant control signal u. For t sufficiently small, we
have ϕ(t;x, u) ∈ B(x, r). Therefore,

ψ(x)− ψ(ϕ(t;x, u))

≤V (x)− V (ϕ(t;x, u))

≤
∫ t

0

L(ϕ(s;x, u), u(s))ds+ V (ϕ(t;x, u))− V (ϕ(t;x, u))

(28)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Physics-Informed Neural Network Policy Iteration

where the second line is in virtue of Proposition 2.3. Considering the infinitesimal behavior on both sides of (28), we have

−Dψ(x) · (f(x) + g(x)u) ≤ L(x, u),

which implies that H(x,Dψ) ≤ 0.

Now we verify the case when x is a local minimum of V − ψ. For each ε > 0 and t > 0, by the second part of Proposition
2.3, there exists a u′′ ∈ U such that

V (x) ≥
∫ t

0

L(ϕ(s;x, u′′), u′′(s))ds+ V (ϕ(t;x, u))− tε

≥
∫ t

0

L(x, u′′)ds+ V (ϕ(t;x, u))− tε+O(t),

where the second line is by the Lipschitz continuity of L and ϕ, and O(t)/t→ 0 as t→ 0. Therefore, by the local minimum
property of V − ψ,

ψ(x)− ψ(ϕ(t;x, u′′)) ≥ V (x)− V (ϕ(t;x, u′′))

≥
∫ t

0

L(x, u′′)ds− tε+O(t).

Note that u′′ is selected based on some arbitrary ε and t. Now one can use a similar infinitesimal argument as the first part
and obtain H(x,Dψ(x)) ≥ 0.

It can be easily verified that |H(x, 0)| ≤M for some constant M , and, for every r, there exists an Lr such that |H(x, p)−
H(y, p) ≤ Lr|x− y|(1 + |p|) for |x|, |y| ≤ r. The uniqueness argument follows (Theorem 1, Section 10.2, Evans, 2010),
(Section VI.3, Bardi et al., 1997), and (Camilli et al., 2001, Section 3).

Proof of Theorem 2.5: Let pi ∈ ∂+V (xi). Then, by Lemma A.2, there exists ψi ∈ C1 such that Dψi(xi) = pi,
V (xi) = ψi(xi), and V ≤ ψ in the neighborhood. Since {x ∈ Ω : ∂+(x) ̸= ∅} is dense, setting t0 = 0 and tk → ∞ as
k → ∞, we can patch up J in the following sense given that ti − ti−1 > 0 is sufficient small for all i ∈ {1, 2, · · · }:

J(x, κ(ϕ(·))) = lim
k→∞

{
k∑

i=0

∫ tk

ti

L(ϕ(s;ϕ(ti;x, κ), κ(ϕ(s))ds+ J(ϕ(tk;x, κ), κ)

}
≥ψ(x)− lim

k→∞
ψ(ϕ(tk;x, κ) ≥ V (x).

(29)

The opposite inequality can be shown in a similar manner.

C. Proofs in Section 4
C.1. Results in Section 4.1

Proof of Proposition 4.1: The existence and uniqueness of ϕ follows by the basic assumptions on (1). Now we define

V (x) =

∫ ∞

0

L(ϕ(s;x, u), u(ϕ(s;x, u))ds. (30)

Then V is positive definite, and, for all t > 0, we have

V (x) =

∫ t

0

L(ϕ(s;x, u), u(ϕ(s;x, u))ds+

∫ ∞

t

L(ϕ(s;x, u), u(ϕ(s;x, u))ds

=

∫ t

0

L(ϕ(s;x, u), u(ϕ(s;x, u))ds+

∫ ∞

0

L(ϕ(s;ϕ(t;x, u), u), u(ϕ(s;ϕ(t;x, u), u))ds

=

∫ t

0

L(ϕ(s;x, u), u(ϕ(s))ds+ V (ϕ(t;x, u)).

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Physics-Informed Neural Network Policy Iteration

To verify V is a viscosity solution, we use a similar method as in the proof of Proposition 2.4. Let ψ ∈ C1 and x be a local
maximum point of V − ψ. Then, for t sufficiently small, we have ϕ(t;x, u) ∈ B(x, r). Therefore,

ψ(x)− ψ(ϕ(t;x, u))

≤V (x)− V (ϕ(t;x, u))

=

∫ t

0

L(ϕ(s;x, u), u(ϕ(s))ds+ V (ϕ(t;x, u))− V (ϕ(t;x, u)).

(31)

Considering the infinitesimal behavior on both sides of (31), we have

−Dψ(x) · (f(x) + g(x)u) ≤ L(x, u),

which implies that G(x, u,Dψ) ≤ 0. The other side of the comparison falls in the same procedure.

To validate the uniqueness, we notice that for a stabilizing state feedback control u = κ(x), the Lipschitz continuous
function f(x) + g(x)κ(x) can only have a zero at 0. Given that V (0) = 0, and suppose that Ω ⊆ R, the uniqueness is
followed by (Liu et al., 2023a, Proposition 2) and (Meng et al., 2023, Theorem 19). In addition, we notice that the quantity
DV (x) = −L(x, κ(x))/(f(x) + g(x)κ(x)) is differentiable continuous solution other than 0. For higher dimensional case,
we address the problem using the well-known method of characteristics. The solvability of C1 solution depends on the
non-singularity of the Jacobian matrix, which is only problematic at 0. By the continuity of viscosity solution, V is uniquely
defined on Ω.

Remark C.1. During the policy iteration, we cannot guarantee an everywhere C1 property of the solutions to GHJBs.
Revisiting the example in Section 3.1, the corresponding GHJB is given by x2+DV (x) · (xu) = 0. One can simply initialize
with an admissible controller u = κ0(x) = − 1

2 |x|. Then, V0(x) = 2|x| uniquely solves the GHJB only in the viscosity
sense, which fails to be everywhere C1 in the first iteration. In view of the last part of the above proof, the non-differentiable
points are only decided by the zeros of f(x) + g(x)κ(x). In addition, to resolve Remark 4.3, one can simply follow the
exact argument.

Proof of Theorem 4.4:

(1) By Proposition 4.1, the function V ∈ C1(Ω \ 0) ∩ C(Ω). Apart from 0, the exact-PI provides an admissible controller
for each iteration, which follows the exact procedure as in (Lemma 5.2.4, Beard, 1995). At 0, by exact-PI, the state
feedback controller returns a 0. In addition, the upper and lower Dini derivatives D+V (x; p) and D−V (x; p) for any p
exist and are bounded. The Lipschitz continuity of ui at 0 also follows by the definition.

(2) Note that, at differentiable points, the proof follows exactly as (Theorem 3.1.4, Jiang & Jiang, 2017). However, in line
with the concept of viscosity solutions, we provide a general proof. To begin with, along the trajectory subject to the
controller ui+1, we have, for each x,

Vi+1 − Vi

≤
∫ ∞

0

D+(Vi+1 − Vi)(ϕ(s); f(ϕ(s)) + g(ϕ(s))ui+1)ds

≤
∫ ∞

0

(D+Vi+1 −D−Vi)(ϕ(s); f(ϕ(s))ds+

∫ ∞

0

g(ϕ(s))ui+1)ds,

(32)

where the existence of Dini derivatives are granted by the Lipschitz continuity of Vi and Vi+1. On the other hand, Vi
and Vi+1 are, respectively, the unique viscosity solution to G(x, ui, DVi) and G(x, ui+1, DVi+1) = 0. By Theorem
A.4, and plugging the directional Dini derivative D+Vi+1(ϕ(s); f(ϕ(s)) + g(ϕ(s))ui+1) and D−Vi(ϕ(s); f(ϕ(s)) +
g(ϕ(s))ui into (32), one can obtain that

Vi+1(x)− Vi(x)

≤−
∫ ∞

0

∥ui∥2R + ∥ui+1∥2R − 2uTi+1Ruids

≤−
∫ ∞

0

∥ui+1 − ui∥2R ds ≤ 0.

(33)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Physics-Informed Neural Network Policy Iteration

(3) It is a well-known result that a monotonic sequence of functions {Vi}i≥0 that is bounded from below converges
pointwise to a function V∞. In view of Dini’s theorem (see also the proof of (Theorem 5.3.1, Beard, 1995)), the
sequence also converges uniformly provided that Ω is compact. In addition, it can be verified that {Vi} has a uniformly
bounded Lipschitz constant on Ω and forms a compact subspace in C(Ω), which implies the Lipschitz continuity of
V∞. The pointwise convergence of {ui}i≥0 also follows (Theorem 3.1.4, Jiang & Jiang, 2017).

It suffices to show that V∞ is a viscosity solution to (8). On Ω \ {0}, DV∞ exists uniquely almost everywhere
(a.e.) and is Lebesgue integrable. Based on the definition of Gi as well as the pointwise convergence of {ui},
we have that DVi is Lebesgue integrable for each i and converges pointwise. Combining the fact that Vi → V∞
uniformly, we have limi→∞DVi = DV∞ a.e. by Radon-Nikodym theorem. However, it can be verified that
limi→∞DVi solves (8) pointwise on Ω \ {0}. It follows that DV∞ solves (8) a.e. on Ω \ {0}. At 0, we have that
V∞(0) = limi→∞ Vi(0) = 0, which may not be differentiable. However, it is clear that H(x, p) is convex in p for
each fixed x, and H(x,DV∞(x)) = 0 a.e. on Ω. By (Proposition 5.2, Chapter II, Bardi et al., 1997), V∞ is a viscosity
solution on Ω. In virtue of Proposition 2.4, V∞ should also be the unique viscosity solution. Therefore, V∞ = V ∗.

Remark C.2. It is worth noting that (3) of (Theorem 3.1.4, Jiang & Jiang, 2017) is based on the assumptions V ∗, V∞ ∈
C1(Ω). However, both assumptions are not necessarily guaranteed. As pointed out in Section 3.1, the HJB −x2 +
1
4 (DV (x))2x2 = 0 has a unique viscosity solution V ∗(x) = 2|x|, which fails to be differentiable at 0. As for V∞, it is
the limit of {Vi} only w.r.t. the uniform norm rather than the C1-norm. The C1 property of V∞ on Ω \ {0} is not even
guaranteed.

The convergence of DVi → DV∞ (if exists) is also not clear in (Theorem 3.1.4, Jiang & Jiang, 2017) and (Theorem 5.3.1,
Beard, 1995) relying only on the uniform convergence of {Vi}. To ensure that V∞ solves (8), the work (Theorem 3.2, Farsi
& Liu, 2023) made a strong assumption on the uniform convergence of {DVi}, which cannot be guaranteed in practice. In
this view, it is necessary to consider the convergence and solutions in the viscosity sense for general cases. The above proof
takes advantage of the convexity of H(x, p) in p such that only the property of limi→∞DVi = DV∞ a.e. is needed.

C.2. Results in Section 4.2

In order to ensure the coherence of the proofs within this subsection, we recall the following notation. Given κ0, {Vi} and
{κi+1} are updated by exact-PI. In other words, for each i ≥ 0, Vi is the unique viscosity solution to

Gi(x, κi, DVi(x))

=Q(x) + ∥κi(x)∥2R +DVi(x) · (f(x) + g(x)κi(x))

=0,

(34)

and κi+1 is updated by (10). In addition, {V̂i} and {κ̂i+1} are updated by PINN-PI with κ̂0 = κ0. For each i ≥ 0, we also
denote Ṽi as the true viscosity solutions to

Gi(x, κ̂i, DṼi(x))

=Q(x) + ∥κ̂i(x)∥2R +DṼi(x) · (f(x) + g(x)κ̂i(x))

=0.

(35)

Accordingly, we also set κ̃i+1(x) = − 1
2R

−1(x)g(x)DṼi(x) if x ̸= 0, and κ̃i+1(0) = 0.

Before proving Theorem 4.9, we look at a lemma that entails the expected convergence result.

Lemma C.3. Suppose for each i ≥ 0, we have

sup
x∈Ω

∣∣∣V̂i(x)− Ṽi(x)
∣∣∣+ sup

x∈Ω
|κ̂i+1(x)− κ̃i+1(x)| → 0 (36)

Then, PINN-PI can guarantee that

sup
x∈Ω

∣∣∣V̂i(x)− Vi(x)
∣∣∣+ sup

x∈Ω
|κ̂i+1(x)− κi+1(x)| → 0. (37)

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Physics-Informed Neural Network Policy Iteration

Proof. We prove the convergence by induction. For i = 0, we have κ̂0 = κ0. Then V0 = Ṽ0 by Corollary 4.2. By
the definition of κ1 and κ̃1, it follows that κ1 = κ̃1. We can train the neural network sufficiently well, such that
supx∈Ω

∣∣∣V̂0(x)− Ṽ0(x)
∣∣∣+ supx∈Ω |κ̂1(x)− κ̃1(x)| → 0, which immediately implies

sup
x∈Ω

∣∣∣V̂0(x)− V0(x)
∣∣∣+ sup

x∈Ω
|κ̂1(x)− κ1(x)| → 0.

For each i ≥ 1, let Wi = Vi − Ṽi. Then, Wi ∈ C1(Ω \ {0})), DWi ∈ C(Ω \ {0})), and Wi(0) = 0. Since on Ω \ {0}, Vi
and Ṽi solves (34) and (35) in the conventional sense. A direct comparison of (34) and (35) gives that

DWi(x) · (f(x) + g(x)κ̂i(x))

=− gT (x)DVi(x) · (κ̂i(x)− κi(x)))− ∥κ̂i(x)∥2R + ∥κi(x)∥2R .

However, gTDVi = −2Rκi + 2R(κi − κi+1). Therefore, on Ω \ {0},

DWi(x) · (f(x) + g(x)κ̂i(x))

=2R(x)κi(κ̂i(x)− κ(x))− 2R(x)(κi(x)− κi+1(x))(κ̂i(x)− κi(x))− κ̂Ti (x)R(x)κ̂i(x) + κTi (x)R(x)κi(x)

=− ∥κ̂i(x)− κi(x)∥2R − 2R(x)(κi(x)− κi+1(x))(κ̂i(x)− κi(x)),

and

|DWi(x) · (f(x) + g(x)κ̂i(x))|

≤ ∥κ̂i(x)− κi(x)∥2R + 2∥R(x)∥|κi(x)− κi+1(x)||κ̂i(x)− κi(x)|.
(38)

For simplicity, we define an intermediate Hamiltonian

Fi(x,DWi(x))

:=|DWi(x) · (f(x) + g(x)κ̂i(x))| − ∥κ̂i(x)− κi(x)∥2R − 2∥R∥|κi(x)− κi+1(x)||κ̂i(x)− κi(x)|.
(39)

Note that for each i ≥ 1, the mapping p 7→ Fi(x, p) is convex for any fixed x. By (Proposition 5.1, Chapter II, Bardi
et al., 1997), Wi is the viscosity solution to Fi(x,DWi(x)) = 0 on Ω. Given that κ̂i converges to κi uniformly, applying
(Proposition 2.2, Chapter II, Bardi et al., 1997), Wi should uniformly converges (on Ω) to the viscosity solution of

|DWi(x)| · (f(x) + g(x)κ̂i(x)) = 0,

which is the constant 0. As a byproduct, due to the continuous differentiability on Ω \ {0}, one can check that DṼi → DVi
(or |DWi| → 0) uniformly on Ω \ {0}. However, by the definition of κ̃i and κi again, we have κ̃i+1 → κi+1 in the same
sense on Ω. By the hypothesis (36), and a triangle inequality argument, the uniform convergence in (37) follows.

Remark C.4. In the proof, leveraging the convexity of Fi(x,DWi(x)) in DWi(x), the result in (Proposition 2.2, Chapter
II, Bardi et al., 1997) ensures that the uniform convergence |Ṽi − Vi| in C1 norm on Ω \ {0} (almost everywhere) can lead
to a weaker convergence on Ω (everywhere):

sup
x∈Ω

∣∣∣Ṽi(x)− Vi(x)
∣∣∣+ sup

x∈Ω
|κ̃i+1(x)− κi+1(x)| → 0. (40)

In other words, we sacrifice the exact convergence of |DṼi −DVi| at 0 (due to the potential lack of differentiability), and
use the convergence of supx∈Ω |κ̃i+1(x)− κi+1(x)| instead. Note that, the mapping g in the definition of κ̃i+1 and κi has a
smoothing effect. And this is also the reason why we can achieve the desired convergence property on the entire Ω.

Proof of Proposition 4.7: Recall that this proposition considers the general case for any GHJB G(x, κ(x), DV (x)) = 0
with admissible κ as in Proposition 4.1. Given that f(x) + g(x)κ(x) is bounded from above and away from 0 on Ω \ Uε, it
can be easily shown that DV of the true solution V is also Lipschitz continuous. We first introduce short hand notations
| · |∞ := supx∈Ω\Uε

| · | and ∥ · ∥2 :=
∫
Ω\Uε

| · |2dx for functions. For any Lipschitz continuous function h on Ω \ Uε, we
define the Lipschitz constant as

Lip(h) := sup
x̸=y

|h(x)− h(y)|
|x− y|

.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Physics-Informed Neural Network Policy Iteration

For any V̂N ∈ F , let RN (x) := G(x, κ(x), DV̂N (x)). It is clear that RN is Lipschitz continuous by the definition of G.
Step 1: We first show some useful bounds. Note that, given the compactness of Ω \ Uε and the continuous differentiability
of V̂N , we have

|V̂N |C1 = |V̂N |∞ + |DV̂N |∞
≤ C1 · |DV̂N |∞ + |V̂N (0)|,

(41)

where C1 = supx∈Ω\Uε
|x|+ 1. In addition, since f(x) + g(x)κ(x) is bounded from above and away from 0 on Ω \ Uε, it

can be verified that

C2 · |DV̂N |∞ ≤ sup
x∈Ω\Uε

|L(x, κ(x)) +RN (x)|

≤ C3 · |DVN |∞,
(42)

where C2 = infx∈Ω\Uε
|min{f(x) + g(x)κ(x)}| and C3 = |f(x) + g(x)κ(x)|∞.

Now we show the bound for |RN (x)|∞. Let x∗, x∗ be the maximizer and minimizer for |RN (x)|, respectively. Then∫
Ω\Uε

|RN (x)|2dx

≥µ(Ω \ Uε) · |RN (x∗)|2

=µ(Ω \ Uε) · |RN (x∗)−RN (x∗) +RN (x∗)|2

≥µ(Ω \ Uε) · (−2|RN (x∗)−RN (x∗)||RN (x∗)|+R2
N (x∗)),

and consequently,

|RN (x)|2∞

≤
(

1

µ(Ω \ Uε)
∥RN∥22

)
+ 2|RN (x∗)−RN (x∗)||RN (x∗)|

≤
(

1

µ(Ω \ Uε)
∥RN∥22

)
+ 4Lip2(RN) · sup

x∈Ω\Uε

|x|.

This implies that there exists a C4 > 0 such that

|RN |∞ ≤ C4(∥RN∥2 + Lip(RN)). (43)

Step 2: We show the continuous dependence of ∥RN∥2 on ET,N (V̂N). Define{
V̂N ∈ F : Lip(RN) +

∣∣∣V̂N (0)
∣∣∣ < r

}
=: Fr,

which is uniformly equicontinuous and hence compact. Pick ϑ > 0. By the uniform continuity of G, there is a δ > 0 such
that for all V̂N ∈ Fr and every x, z ∈ X with |x− z| < δ, we have

|RN (x)−RN (y)| < min

{√
ϑ

3
,

ϑ

6MFr

}

where MFr
is a uniform upper bound on |RN (x)| for V̂N ∈ F̄r and x ∈ Ω \ Uε (this bound exists by compactness of F̄r

and continuity of G).

For this δ, we can pick an N1 ∈ N so that δN1 < δ. It follows that for all N ≥ N1, we have Ω \ Uε ⊆
⋃N

k=1 BX
δN

(xk)

and δN < δ. By Hypothesis 4.5 and the assumption that ET,N (V̂N) → 0, there is a N2 ∈ N with for all n ≥ N2 we have
Emod

T,N (V̂N) < ϑ
3 , where

Emod
T,N (V̂N) =

1

N

N∑
k=1

|RN (xk)|2 + |Lip(RN)|+
∣∣∣V̂ (0)

∣∣∣ .
17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Physics-Informed Neural Network Policy Iteration

Then, for all N ≥ max{N1, N2}

∥RN∥2 ≤
∫
x∈

⋃N
k=1 BΩ\Uε

δN
(xk)

|RN (x)|2 dx

≤
N∑

k=1

∫
x∈BΩ\Uε

δN
(xk)

|RN (x)|2 dx

≤
N∑

k=1

µ
(
BΩ\Uε

δN
(xk)

)
|RN (x∗k)|2

where x∗k ∈ BΩ\Uε

δN
(xk) is the maximizer of |RN (x)|. Let µN := µ

(
BΩ\Uε

δN
(xk)

)
. Then, by uniform continuity of RN , we

see

N∑
k=1

µN |RN (x∗k)|2 ≤µN

N∑
k=1

(|RN (x∗k)−RN (xk)|+ |RN (xk)|)2

<µN

N∑
k=1

(
min

{√
ϑ

3
,

ϑ

6MFr

}
+ |RN (xk)|

)2

≤µN

N∑
k=1

(
ϑ

3
+
ϑ

3

|RN (xk)|
MFr

+ |RN (xk)|22

)

≤µN

N∑
k=1

(
ϑ

3
+
ϑ

3

)
+ µN

N∑
k=1

|RN (xk)|22

≤ϑC5.

where C5 := NµN . This completes the proof of Step 2.
Step 3: Now we are ready to prove the statement in this proposition. For simplicity, we write a <∼ b if there exists a constant
C > 0, independent of a and b, such that a ≤ Cb.

We pick sufficiently large N,M , then, by Eq. (41), (42), and (43),

|V̂N − V̂M |C1 <∼ |RN −RM |∞ + |V̂N (0)− V̂M (0)|
<∼ ∥RN −RM∥2 + Lip(RN −RM) + |V̂N (0)− V̂M (0)|.

In addition, given that ET,N (V̂N) can be arbitrarily small, by Step 2 and Hypothesis 4.5, it is clear that {V̂N}N forms a
Cauchy sequence. We denote the limit as V̂ ∗ ∈ F , which solves the equation G(x, κ(x), DV̂ ∗(x)) = 0. By the uniqueness
of the solution of G as in Proposition 4.1, one can conclude that V̂ ∗(x) = V (x).

Proof of Theorem 4.9: For any ε > 0 and for each i, by Proposition 4.7, one can guarantee a C1-uniform convergence of
V̂i to Ṽi on the compact set Ω \ Uε, where V̂i plays the role of the representable functions in Proposition 4.7. In view of
Remark C.4, one can obtain the convergence

sup
x∈Ω\Uε

∣∣∣V̂i(x)− Ṽi(x)
∣∣∣+ sup

x∈Ω\Uε

|κ̂i+1(x)− κ̃i+1(x)| → 0, (44)

with a modified convergence region Ω \ Uε instead of Ω.

On Uε \ {0}, by the continuous differentiability of V̂i, Ṽi, and g, one can immediately verify that

|V̂i(x)− Ṽi(x)| ≤ sup
x∈Uε

(|DV̂i(x)|+ |DṼi(x)|) · |x| (45)

and

|κ̂i+1(x)− κ̃i+1(x)| ≤ C|x|, (46)

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Physics-Informed Neural Network Policy Iteration

where
C = sup

x∈Uε\{0}
|DgT (x)| · sup

x∈Uε\{0}
(|DV̂i(x)|+ |DṼi(x)|)

and DgT (x) is the Fréchet derivative at x. Note that the quantities V̂i, Ṽi, κ̂i+1, and κ̃i+1 are all null values at 0.
In addition, since ε > 0 is arbitrarily small, combining Eq. (44), (45), (46), one can have the arbitrarily smallness of
supx∈Ω

∣∣∣V̂i(x)− Ṽi(x)
∣∣∣+supx∈Ω |κ̂i+1(x)− κ̃i+1(x)|. By Lemma C.3, the statement in Theorem 4.9 follows immediately.

D. Further details on verification of Lyapunov conditions
We aim to verify that a value function returned by Algorithms 1 or 2 satisfies the Lyapunov condition (24), recalled here as

DV (x)(f + g(x)κ(x)) ≤ −µ, x ∈ Ω \ Uε. (47)

To obtain more information, we can verify a slightly stronger set of conditions defined below to facilitate the claim for
asymptotic attraction and region of attraction:

1. DV (x)(f + g(x)κ(x)) ≤ −µ, ∀x ∈ {x ∈ Ω : c1 ≤ V (x) ≤ c2};

2. {x ∈ Ω : V (x) ≤ c2} ∩ ∂Ω = ∅, where ∂Ω is the boundary of Ω;

3. {x ∈ Ω : V (x) ≤ c1} ⊆ Uε.

By these conditions, V will decrease along solutions of the closed-loop system under control u = κ(x) and cannot
escape Ω if solutions start in Ωc2 := {x ∈ Ω : V (x) ≤ c2}. Furthermore, these solutions eventually reach the set Ωc1 =
{x ∈ Ω : V (x) ≤ c1}, which is contained in Bε. While (12) appears to be a weaker condition than the above set of three
conditions, if V is positive definite on Ω with respect to the origin, then, for any ε > 0, we can always choose c1 and c2 such
that the above conditions hold. Verifying these conditions readily gives a region of attraction Ωc2 and an attractive set Ωc1 .

E. Numerical experiments
E.1. Implementation details

All instances of ELM-PI and PINN-PI are run with the tanh activation function, unless otherwise noted. The tanh activation
function is effective in approximating smooth functions. If non-smooth functions are involved, ReLU activation might be
preferred (see Section F.3.1).

The same as in Section 5 and Table 1, we run all examples with N = m ∗ d, where m is the size of the network, and d is
the dimension of the problem. The iteration number of PI is set to be 10. We only implemented a one-layer network for
PINN-PI to draw fair comparisons with ELM-PI and basis function approaches such as successive Galerkin approximations
(see Section E.3).

For both ELM-PI and PINN-PI, the number of iterations in PI is set to be 10. For PINN-PI, we train the network for 10,000
steps in each iteration with Adam. For m ≤ 1, 600, we conduct three separate runs of the experiments to report the average
maximum testing errors and runtimes. For m ≥ 3, 200, the computational time is significantly larger and reported for a
single run. ELM-PI experiments were run with an Intel Gold 6148 Skylake @ 2.4 GHz, and PINN-PI experiments were run
with an NVidia V100SXM2 (16G memory). The errors reported are testing errors on 2 ∗N points, where N is the number
of collocation points.

E.2. Verification of synthetic n-dimensional nonlinear control

The domain on which we solve the problem is set to be Ω = [−1, 1]n. Recall that the optimal value function is given by

V ∗(x) =

n∑
i=1

(
1

2
x4i +

1

2
(x2i + 1)2 − 1

2

)
.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Physics-Informed Neural Network Policy Iteration

The detailed comparisons of training ELM-PI and PINN-PI on this synthetic example are shown in Table 1.

We also conducted formal verification experiments on this example. It is easy to verify that the largest level set of
V ∗ contained in Ω is {V ∗ ≤ 2}. In other words, we should be able to verify conditions (1)–(3) in Section D with any
0 < c1 < c2 < 2. We verified value functions returned by ELM-PI and PINN-PI against conditions (1)–(3). The results
are summarized in Table 2. The parameters used for verification are µ = 1e − 4, c1 = 0.01, c2 = 1.99, and ε = 0.1.
We employed dReal (Gao et al., 2013) for verification. It is evident from the results that dReal, which utilizes interval
analysis, falls prey to the curse of dimensionality. We also noted an intriguing observation that the value functions returned
by ELM-PI, despite possessing the same form and number of neurons as those from PINN-PI, appear to pose a greater
challenge for verification by dReal. This peculiar observation currently lacks a robust explanation, and it may pertain to the
implementation of the dReal tool (Gao et al., 2013). On potential explanation is that the value function trained with ELM
tends to have large coefficients, which may pose a challenge for verification with dReal. One may mitigate the issue by
adding a L2 regularization term for the coefficients, at the expense of accuracy. We plan to investigate this issue further as
well as alternative tools for verification in our future work.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e
Fu

nc
tio

n

Value Function Projection to x1 Dimension (Iteration: 10)
Iter. 1
Iter. 2
Iter. 3
Iter. 4
Iter. 5

Iter. 6
Iter. 7
Iter. 8
Iter. 9
Iter. 10

(a) m = 100, N = 200

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

0.0

0.5

1.0

1.5

2.0

2.5

Va
lu

e
Fu

nc
tio

n

Value Function Projection to x1 Dimension (Iteration: 10)
Iter. 1
Iter. 2
Iter. 3
Iter. 4
Iter. 5

Iter. 6
Iter. 7
Iter. 8
Iter. 9
Iter. 10

(b) m = 50, N = 200

Figure 1: ELM-PI on inverted pendulum: despite visual similarity and apparent convergence, the controller obtained from
m = 50 fails to stabilize the system, while the one from m = 100 can be verified to be stabilizing using an SMT solver.

E.3. Inverted pendulum and comparison with successive Gakerlin approximations

The dynamics of the inverted pendulum are described by θ̈ = mgℓ sin θ−µθ̇+u
mℓ2 , where u is the control input. We consider

ℓ = 0.5, m = 0.1, g = 9.8, µ = 0.1. The cost function is defined by Q = I2 and R = 2. We run both ELM-PI and
PINN-PI to compute the optimal control and policy. In this case, we do not have the analytical expression of the optimal
value function as the ground truth. We extract the resulting optimal controllers and plot trajectories from random initial
conditions to show the stability and performance of the controllers.

We use the inverted pendulum example to compare successive Gakerlin approximations (SGA) (Beard et al., 1997) and
the proposed neural policy iteration algorithms. We run ELM-PI and PINN-PI with m = 50, m = 100, m = 200, and
m = 400. We also run SGA with polynomial bases of order 2, 4, 6, 8. All algorithms are run with 10 iterations. The
results are summarized in Table 3. From these results, it is clear that ELM-PI requires significantly less computational
time on this low-dimensional example, as shown already in Section 5 and Table 1. To demonstrate the performance of the
obtained controllers, we simulate trajectories resulting from different controllers with random initial conditions with the
same random seed for different controllers). Figure 2 depicts the simulated costs averaged over 50 trajectories. It can be
seen that high-order SGA achieves the same cost as ELM-PI with different m values. PINN-PI achieves similar costs but
requires longer training time as expected.

We also verified the stability of the resulting controllers. In all the cases, we are able to verify the Lyapunov stability
conditions outlined in Section D with c1 = 0.01 and c2 = 0.029. While c2 = 0.029 appears to be small, it indeed gives the

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Physics-Informed Neural Network Policy Iteration

Table 1: Performance of ELM-PI and PINN-PI on a synthetic n-dimensional nonlinear problem: Here, n represents the
dimension of the problem, m denotes the number of hidden units used for approximation, and N indicates the number of
collocation points.

Problem & model size ELM-PI PINN-PI

n m N Error Time (s) Error Time (s)

1 50 50 1.54E-10 0.03 2.45E-03 236.69
1 100 100 1.14E-10 0.08 2.86E-03 240.79
1 200 200 1.25E-11 0.21 2.17E-03 284.02

2 50 100 1.26E-01 0.07 1.03E-02 237.31
2 100 200 8.75E-04 0.18 4.97E-03 273.05
2 200 400 8.37E-07 0.52 9.87E-03 336.04
2 400 800 1.79E-08 1.81 1.69E-02 560.14
2 800 1600 2.47E-09 25.94 3.10E-02 843.12
2 1600 3200 6.10E-10 184.98 1.53E-02 953.37

3 200 600 7.65E-02 0.82 1.95E-02 371.18
3 400 1200 7.66E-03 2.62 1.21E-02 762.42
3 800 1600 1.34E-04 33.77 1.48E-02 866.44
3 1600 4800 2.18E-06 284.53 2.55E-02 1034.34
3 3200 9600 2.58E-07 3593.61 2.81E-02 768.84

4 800 3200 2.02E-01 24.59 2.85E-02 903.55
4 1600 6400 3.29E-02 346.79 3.51E-02 1121.94
4 3200 12800 2.92E-03 4771.60 3.52E-02 984.04
4 6400 25600 4.35E-05 43052.25 4.39E-02 3304.76

5 800 4800 5.36E00 32.22 3.63E-02 770.54
5 3200 16000 3.08E-01 6303.20 5.20E-02 1204.22
5 6400 32000 6.37E-02 53479.10 9.10E-02 5906.69

6 800 4800 8.76E00 39.03 4.31E-02 800.76
6 6400 38400 2.33E00 63403.53 1.38E-01 6995.10

7 800 100000 – – 3.74E-02 4414.28
8 800 100000 – – 5.28E-02 4415.12
9 800 100000 – – 4.88E-02 4422.54
10 800 100000 – – 3.66E-02 4424.33
11 800 100000 – – 8.29E-02 4424.00
12 800 100000 – – 6.11E-02 4426.54

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Physics-Informed Neural Network Policy Iteration

Table 2: Training and verification of ELM-PI and PINN-PI on an n-dimensional nonlinear control example: value functions
returned by ELM-PI and PINN-PI are verified against the Lyapunov conditions in Section D. The experimental setup is the
same as the results in Table 1. The experiments in this table were run on a MacBook Pro with a 2 GHz Quad-Core Intel Core
i5. Note that the results may slightly vary due to the selection of a random seed. The symbol × indicates that verification
by dReal (Gao et al., 2013) returned a counterexample for c1 = 0.01 and c2 = 1.99 and t.o. indicates verification was not
conclusive within 1,800 (s).

Problem & model size ELM-PI PINN-PI

n m Verify (s) Verify (s)

1 50 6.99 0.02
1 100 2.20 0.05
1 200 4.13 0.14

2 50 t.o. ×
2 100 t.o. 0.68
2 200 t.o. 1.88
2 400 t.o. 6.10

largest level set of the optimal value function contained in the region of interest, as shown in Figure 3.

Furthermore, Figure 1 depicts the training results for ELM-PI with m = 50 and m = 100. While the plots appear similar,
the controller obtained from m = 50 fails to stabilize the system, while the one from m = 100 can be verified to be
stabilizing using an SMT solver. This highlights the importance of formal verification to ensure stability guarantees.

0 2 4 6 8 10
Time

0

20

40

60

80

Ac
cu

m
ul

at
ed

 C
os

t

Accumulated Cost Comparison

SGA (order=2)
SGA (order=4)
SGA (order=6)
SGA (order=8)

ELM (m=50)
ELM (m=100)
ELM (m=200)
ELM (m=400)

PINN (m=50)
PINN (m=100)
PINN (m=200)
PINN (m=400)

Figure 2: ELM-PI, PINN-PI, and SGA on the inverted pendulum example: it can be seen that the value returned by a
high-order SGA achieves the same cost as ELM-PI with a different number of neurons, while the computational time
required by ELM-PI is significantly less. In all the cases, we are able to verify the Lyapunov stability conditions outlined in
Section D are met.

F. Comparison with reinforcement learning algorithms on benchmark nonlinear control
problems

F.1. Rationale for algorithms selection in comparison

We chose three recent RL algorithms as benchmarks: two model-free ones, PPO and HJBPPO, and one model-based,
CT-MBRL. We used the implementation of PPO from the stable-baselines3 library (Raffin et al., 2021), and we implemented
HJBPPO by modifying this library. Since HJBPPO addresses the same problems as ours and incorporates the HJB equation

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Physics-Informed Neural Network Policy Iteration

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x2

Level sets
SGA (order 2)
SGA (order 8)
PINN (m=100)
ELM (m=100)

Figure 3: Certified regions of attraction by ELM-PI, PINN-PI, and SGA on the inverted pendulum example: it can be seen
that for high-order SGA, PINN-PI, and ELM-PI, a region of attraction close to the boundary of the region of interest Ω can
be verified using SMT solvers.

Table 3: Comparison of ELM-PI, PINN-PI, and SGA on the inverted pendulum example: we run ELM-PI and PINN-PI with
m = 50, m = 100, m = 200, and m = 400 and SGA (Beard et al., 1997) with polynomial bases of order 2, 4, 6, 8. We
record the training/computational time and whether the resulting controller is verifiably stabilizing.

SGA ELM-PI PINN-PI

Order Time (s) Verified? m Time (s) Verified? m Time (s) Verified?

2 4.80 Yes 50 0.11 Yes 50 255.15 Yes
4 19.37 Yes 100 0.24 Yes 100 256.53 Yes
6 66.52 Yes 200 0.71 Yes 200 258.89 Yes
8 212.42 Yes 400 2.92 Yes 400 256.52 Yes

to derive better policies than PPO, we compare our algorithm with both as model-free RL benchmarks. On the other hand,
CT-MBRL is a state-of-the-art model-based RL algorithm that concerns similar environments to those in our numerical
experiments.

It is worth mentioning that the ultimate goal of our algorithm is to devise optimal and stabilizing controllers for nonlinear
systems after a few policy iterations, which can provide asymptotic stability for an infinite time horizon. This differs from
the typical performance comparisons for RL algorithms, where success rate or normalized/averaged scores obtained using
episodic training are used. For instance, for Cartpole, our PI-generated policy can maintain the rod in the upright position
after a few seconds, while policies generated by most RL algorithms oscillate around the upright position. As long as it does
not fall out of a given interval, it is regarded as a success with a reward, which means the trajectories do not asymptotically
converge to the equilibrium points. In contrast, our algorithms achieve asymptotic stability, meaning the controller can be
deployed for any duration of time with convergence guarantees.

F.2. Comparison results

We compare PINN-PI with three reinforcement learning (RL) algorithms in Figure 4 by comparing their accumulated control
costs over time. As shown in the plots, PINN-PI significantly outperforms the rest of the algorithms in the inverted pendulum
environment and the remaining higher-dimensional environments. Code for these comparisons, along with other examples,
is provided in the supplementary material.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Physics-Informed Neural Network Policy Iteration

(a) Inverted Pendulum (b) Cartpole

(c) 2D Quadrotor (d) 3D Quadrotor

Figure 4: Plots of accumulated costs over time for the four environments

Furthermore, Figure 5 show simulated trajectories from different initial conditions under the learned optimal controllers.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Physics-Informed Neural Network Policy Iteration

0 2 4 6 8 10
Time

−2

−1

0

1

2

3

St
at

es

Trajectories of All States Over Time

(a) Inverted Pendulum

0 2 4 6 8 10
Time

−0.50

−0.25

0.00

0.25

0.50

0.75

St
at

es

Trajectories of All States Over Time

(b) Cartpole

0 2 4 6 8 10
Time

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

St
at

es

Trajectories of All States Over Time

(c) 2D Quadrotor

0 2 4 6 8 10
Time

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

St
at

es

Trajectories of All States Over Time

(d) 3D Quadrotor

Figure 5: Plots of trajectories starting from different initial conditions under the optimal controller learned using PINN-PI
for the four environments. All trajectories converge to the origin.

F.3. Additional case studies

F.3.1. 1D BILINEAR SYSTEM

Recall the bilinear scalar problem ẋ = xu, with Q(x) = x2 and R = 1. The optimal value function is V (x) = 2 |x|,
which fails to be differentiable at x = 0. We show that ELM-PI can converge to the optimal value function. We choose the
activation function to be ReLU and set the bias term to zero. ELM-PI achieves 1E-16 accuracy with m ≥ 3. While this is a
simple example, it demonstrates that ELM-PI can potentially achieve arbitrary accuracy, provided that the neural network is
capable of approximating the value function. A plot of the obtained value function after 10 iterations is included in Figure 6.

F.3.2. LORENZ SYSTEM

We consider the stabilization of a chaotic system

ẋ1 = −10x1 + 10x2 + u

ẋ2 = 28x1 − x2 − x1x2

ẋ3 = −8

3
x2 + x1x2

(48)

Without control, the origin is a saddle equilibrium point. We would like to stabilize the system to the origin via policy
iteration. We first run ELM-PI with m = 100, m = 200, m = 400, and m = 800. The computational times are 0.68, 1.55,
7.03, and 46.84 seconds, respectively. In comparison, SGA with polynomial bases of order 2, 4, and 6 takes 6.63, 69.15, and
893.28 seconds. It can be seen from numerical simulations that ELM-PI with m = 400 and m = 800 leads to stabilizing

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Physics-Informed Neural Network Policy Iteration

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e
Fu

nc
tio

n

Value Function (Iteration: 10)
Iter. 1
Iter. 2
Iter. 3
Iter. 4
Iter. 5

Iter. 6
Iter. 7
Iter. 8
Iter. 9
Iter. 10

Figure 6: ELM-PI on the bilinear example with m = 10. The error between the optimal value and computed value function
is within 1E-15 after two iterations.

controllers, whereas m = 100 and m = 200 give unstable controllers. Figure 8 depicts 10 simulated closed-loop trajectories
under the controllers returned by ELM-PI with m = 400 and m = 800. The performance of the controllers returned by
ELM-PI and the initial controller obtained from eigenvalue assignment for the linearized system are shown in Figure 7
through simulated trajectories.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

1.0

0.5

0.0

0.5

1.0

St
at

e

Trajectories of the closed-loop system for Lorenz system

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

1.0

0.5

0.0

0.5

1.0

St
at

e

Trajectories of the closed-loop system for Lorenz system

Figure 7: ELM-PI with m = 400 and m = 800 for the Lorenz system: the left panel shows the closed-loop trajectories
under the controller returned by ELM-PI with m = 400, and the right panel for m = 800.

G. Limitations and future work
We discuss a few limitations of the proposed work and potential future work in this section.

• Convergence analysis: In the convergence analysis, we established that both the exact PI and approximate PI can
converge to the true optimal value and controller, provided that the training error can be made arbitrarily small and
the training set forms a dense subset of the domain. While this is theoretically interesting, the results do not offer
convergence rates or finite sample approximation guarantees. This could be an interesting topic for future research.

• Initial controller and training over larger domains: One of the main drawbacks of PI is that it requires a stabilizing
controller to begin with. On the other hand, we noticed that both PINN-PI and current RL algorithms also struggle to
learn a stabilizing controller over larger domains. In a small region around the equilibrium point, it is always possible

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Physics-Informed Neural Network Policy Iteration

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

0

5000

10000

15000

20000

25000

30000

Ac
cu

m
ul

at
ed

 C
os

t
Accumulated Cost Comparison

SGA (order=2)
SGA (order=4)
SGA (order=6)

ELM (m=400)
ELM (m=800)
Initial

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

400

600

800

1000

1200

1400

1600

1800

Ac
cu

m
ul

at
ed

 C
os

t

Accumulated Cost Comparison

SGA (order=2)
SGA (order=4)
SGA (order=6)

ELM (m=400)
ELM (m=800)

Figure 8: Simulated costs for ELM-PI with m = 400 and m = 800 for the Lorenz system, compared with the performance
of the initial controller obtained from eigenvalue assignment for the linearized system and SGA with polynomial bases
of orders 2, 4, and 6. It can be seen that both ELM and SGA achieve almost identical cost, while the computational time
required by ELM-PI is considerably less.

to use a linear controller. Since PI requires a controlled invariant set to train the subsequent value and control functions,
an interesting topic for future investigation is how to combine controllers that can guarantee to reach a small region of
attraction, patched together with a local stabilizing controller, to offer opportunities for training PINN-PI over a larger
domain.

• Verification: Formal verification remains challenging for high-dimensional value functions. This difficulty seems
unavoidable when computing general optimal value functions. However, there might be ways to circumvent this issue
by designing cost metrics that encourage compositional controllers and value functions, or one can deliberately seek
compositionally verifiable controllers that are suboptimal, yet still provide satisfactory performance with stability
guarantees. We also remarked that the value functions computed with ELM-PI seem harder to verify than those
computed with PINN-PI. This may be due to gradient descent implicitly regularizing the functions. Future work
can investigate this discrepancy in more detail. One can also incorporate probabilistic guarantees with randomized
algorithms for testing.

27

