
Proposed algorithms

Actor-Critic Methods using Physics-Informed 
Neural Networks: Control of a 1D PDE Model for 

Fluid-Cooled Battery Packs

This paper proposes an actor-critic algorithm for controlling the temperature of 

a battery pack using a cooling fluid. This is modeled by a coupled 1D partial 

differential equation (PDE) with a controlled advection term that determines the 

speed of the cooling fluid. The Hamilton-Jacobi-Bellman (HJB) equation is a 

PDE that evaluates the optimality of the value function and determines an 

optimal controller. 

• We propose an algorithm that treats the value network as a Physics-

Informed Neural Network (PINN) to solve the continuous-time HJB equation

• We derive a control function from the HJB equation.

Our experiments show that a hybrid-policy method that updates the value 

network using the HJB equation and updates the policy network identically to 

PPO achieves the best results in the control of this PDE system.
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Modelled by the following coupled PDE

𝑢! 𝑥, 𝑡 = −𝐷 𝑥, 𝑡 𝑢"" 𝑥, 𝑡 + ℎ 𝑥, 𝑡, 𝑢 𝑥, 𝑡 +
1

𝑅 𝑥, 𝑡
𝑢 − 𝑤

𝑤! 𝑥, 𝑡 = −𝜎 𝑡 𝑤"(𝑥, 𝑡) +
1

𝑅 𝑥, 𝑡
𝑤 − 𝑢

with the following boundary conditions
𝑢" 0, 𝑡 = 𝑢" 1, 𝑡 = 0

𝑤 0, 𝑡 = 𝑈 𝑡

where

𝑢: Temperature distribution across battery pack
𝑤: Temperature distribution across cooling fluid
𝐷: Thermal diffusion constant
𝑅#: Thermal resistance
ℎ: Internal heat generation in the battery pack
𝑈: temperature of the cooling fluid at the boundary
𝜎: Transport speed of the cooling fluid (controller)

Objective of the controller:
Maximize ∫$

% ∫$
& 𝛾! −𝑢 𝑥, 𝑡 ' 𝑑𝑥𝑑𝑡

Environment parameters:
ℎ 𝑥, 𝑡, 𝑢 𝑥, 𝑡 = 𝑒$.&) ",!

𝑢 𝑥, 0 = 6
+,$

-

𝐶+ cos 𝜋𝑛𝑥

Δ𝑥 = 0.01, Δ𝑡 = 0.01
𝑈(𝑡) = −5.0, 𝐷(𝑥, 𝑡) = 0.01, 𝑅(𝑥, 𝑡) = 2.0

The 1D pack cooling problem

Theorem 4.1. Let 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 ∈ 𝐿' 0,1 . With 𝜎 𝑡 ∈ 0,1  and the reward function 𝐿D
E

𝑢 ⋅, 𝑡 , 𝑤(
)

⋅
, 𝑡 , 𝜎 𝑡 = − 𝑢 ⋅, 𝑡 + Δ𝑡

'
', the HJB equation for the 1D pack cooling problem is:

𝛾 − 1 𝑉 − 𝑢 ⋅, 𝑡 + Δ𝑡
'
+ 𝑉) 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 , 𝑢! ⋅, 𝑡 +

1
𝑅
𝑉. 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 , 𝑢 ⋅, 𝑡 − 𝑤 ⋅, 𝑡

+ max 0,− 𝑉. 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 , 𝑤" ⋅, 𝑡 = 0

where || ⋅ || is the 𝐿' 0,1  norm and ⋅,⋅  is the 𝐿' 0,1  inner product.

Corollary 4.2. Let 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 ∈ 𝐿' 0,1 . With 𝜎 𝑡 ∈ 0,1  and the reward function 𝐿D
E

𝑢 ⋅, 𝑡 , 𝑤(
)

⋅
, 𝑡 , 𝜎 𝑡 = − 𝑢 ⋅, 𝑡 + Δ𝑡

'
'
, provided the optimal value function 𝑉∗ 𝑢,𝑤  with 𝑉.∗ ⋅, 𝑡 ∈ 𝐿' 0,1 , 

the optimal controller for the 1D pack cooling problem is:

𝜎∗ 𝑡 = K1, 𝑉.
∗ 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 < 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where ⋅,⋅  is the 𝐿' 0,1  inner product.

HJB control of the pack cooling problem
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Consider a controlled dynamical system modeled by the following equation:

𝑥̇ = 𝑓 𝑥, 𝑢 , 𝑥(𝑡$) = 𝑥$

In control theory, the optimal value function 𝑉∗(𝑥) is useful towards finding a 
solution to control problems:

𝑉∗ 𝑡 = sup
0

1
Δ𝑡
U
!!

%
𝛾
!
1!𝐿(𝑥(𝜏; 𝑡$, 𝑥$, 𝜎(⋅)), 𝜎(𝜏))𝑑𝜏

where 𝐿 𝑥, 𝜎  is the reward function, Δ𝑡 is the time step size for numerical 
simulation, and 𝛾 is the discount factor.

Theorem 2.1. A function 𝑉(𝑥) is the optimal value function if and only if:

1. 𝑉 ∈ 𝐶& ℝ+  and 𝑉 satisfies the Hamilton-Jacobi-Bellman (HJB) Equation

𝛾 − 1 𝑉 𝑥 + 𝑠𝑢𝑝0∈	4 𝐿 𝑥, 𝜎 + 𝛾Δ	𝑡∇"𝑉# 𝑥 𝑓 𝑥, 𝜎 = 0

2. For all 𝑥 ∈ ℝ+ , there exists a controller 𝜎∗ ⋅  such that:

𝐿 𝑥, 𝜎∗ 𝑥 + 𝛾Δ	𝑡∇"𝑉# 𝑥 𝑓 𝑥, 𝜎∗ 𝑥
= sup

50
𝐿 𝑥, \𝜎 𝑥 + 𝛾Δ	𝑡∇"𝑉# 𝑥 𝑓 𝑥, \𝜎 𝑥

The HJB equation
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Trajectory of PPO. Cummulative reward: -3970.02 Trajectory of HJB value iteration. Cummulative reward: -7294.51 Trajectory of HJBPPO. Cummulative reward: -881.55

Derived from the HJB equation:
𝑀𝑆𝐸6

=
1
𝑇
6
!,$

#7&

a

b

𝛾 − 1 𝑉 − 𝑢 ⋅, 𝑡 + Δ𝑡
'
+ 𝑉) 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 , 𝑢! ⋅, 𝑡

+
1
𝑅
𝑉. 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 , 𝑢 ⋅, 𝑡 − 𝑤 ⋅, 𝑡 + max 0,− 𝑉. 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 , 𝑤" ⋅, 𝑡

'

At 𝑢(𝑥, 𝑇) = 0,𝑤(𝑥, 𝑇) = −𝑅(𝑥, 𝑡), we have: 𝑢(𝑥, 𝑇) = 0 and 𝑢_𝑡(𝑥, 𝑇) = 0. Thus, 𝑉(0,−𝑅(𝑥, 𝑡)) = 0.

𝑀𝑆𝐸) = 𝑉 0,−𝑅 𝑥, 𝑡
'
= 𝑉 0,−2

'

At 𝑢(𝑥, 𝑇) = 0,𝑤(𝑥, 𝑇) = −𝑅(𝑥, 𝑡), 𝑉 achieves its global maximum.

𝑀𝑆𝐸+ = ∇)𝑉 0,−𝑅 𝑥, 𝑡
'

'
+ ∇.𝑉 0,−𝑅 𝑥, 𝑡

'

'

Controller:

d𝜎 𝑡 = K1, 𝑉. 𝑢 ⋅, 𝑡 , 𝑤 ⋅, 𝑡 < 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

New loss functions for the value network

1. Initiate value network parameter 𝜙
2. Run the controller d𝜎 𝑡 in the environment for 𝑇 timesteps and observe 

samples { 𝑠! , 𝑎! , 𝑅! , 𝑠 !8& }!,&#

3. Compute the value network loss as: 𝐽 𝜙 = 𝑀𝑆𝐸6 +𝑀𝑆𝐸) +𝑀𝑆𝐸+
4. Update 𝜙 ← 𝜙 − 𝛼∇9 𝐽(𝜙)
5. Run steps 2-4 for multiple iterations

HJB value iteration

1. Retrieve state 𝑠! , policy network parameter 𝜃 and value network 
parameter 𝜙

2. Sample 𝑖 ∈ {0,1}
3. if 𝑖 = 0 then select the controller d𝜎 𝑡
4. else run policy 𝜋: ⋅ 𝑠!
5. end

HJBPPO – Action Selection

1. Initiate policy network parameter 𝜃 and value network parameter 𝜙
2. Run action selection as given earlier for 𝑇 timesteps and observe 

samples { 𝑠! , 𝑎! , 𝑅! , 𝑠 !8& }!,&#

3. Compute the advantage 𝐴! = 𝛿𝑡 + 𝛾𝜆 𝛿!8& +⋯+ 𝛾𝜆 #7!7&𝛿#7& where 
𝛿 = 𝑅! + 𝛾𝑉9 𝑠!8& − 𝑉9 𝑠! , 𝛾: Discount factor (≈ 0.99) and 𝜆: 
Smoothing factor (≈ 0.95)

4. Compute 𝑟! 𝜃 = ;" 𝑎! 𝑠!
;"#$% 𝑎! 𝑠!

5. Compute the objective function of the policy network: 𝐿 𝜃 =
&
#
∑!,$#7&min 𝑟! 𝜃 𝐴! , 𝑐𝑙𝑖𝑝 𝑟! 𝜃 , 1 − 𝜖, 1 + 𝜖 𝐴! where 𝜀: clipping 

parameter (≈ 0.2)
6. Update 𝜃 ← 𝜃 − 𝛼&∇9 𝐿(𝜃)
7. Compute the value network loss as: 𝐽 𝜙 = 𝑀𝑆𝐸6 +𝑀𝑆𝐸) +𝑀𝑆𝐸+
8. Update 𝜙 ← 𝜙 − 𝛼'∇9 𝐽(𝜙)
9. Run steps 2-5 for multiple iterations

Hamilton Jacobi Bellman Proximal Policy 
Optimization (HJBPPO)

Results

𝑈̇ = −𝐷𝐴𝑈 + ℎ 𝑈 +
1
𝑅
𝑊 − 𝑈

𝑊̇ = −𝜎 𝑡 𝐵𝑊 +
1
𝑅
(𝑈 −𝑊)

where 𝐴𝑈 approximates 𝑢"" and 𝐵𝑊approximates 𝑤" using finite differences.
Use this discretization to derive the HJB equation.

Discretize the PDE in space to form an ODE

Reward curves of PPO (red), HJB value iteration (blue), and HJBPPO (green) averaged over 5 seeds.
Shaded area indicates 0.2 standard deviations.


