

Actor-Critic Methods using Physics-Informed Neural Networks: Control of a 1D PDE Model for Fluid-Cooled Battery Packs

Amartya Mukherjee, Jun Liu

Department of Applied Mathematics, University of Waterloo

New Frontiers in Learning, Control, and Dynamical Systems

Abstract

This paper proposes an actor-critic algorithm for controlling the temperature of a battery pack using a cooling fluid. This is modeled by a coupled 1D partial differential equation (PDE) with a controlled advection term that determines the speed of the cooling fluid. The Hamilton-Jacobi-Bellman (HJB) equation is a PDE that evaluates the optimality of the value function and determines an optimal controller.

- We propose an algorithm that treats the value network as a Physics-Informed Neural Network (PINN) to solve the continuous-time HJB equation
- We derive a control function from the HJB equation.

Our experiments show that a hybrid-policy method that updates the value network using the HJB equation and updates the policy network identically to PPO achieves the best results in the control of this PDE system.

The 1D pack cooling problem

Modelled by the following coupled PDE

$$u_t(x,t) = -D(x,t)u_{xx}(x,t) + h(x,t,u(x,t)) + \frac{1}{R(x,t)}(u-w)$$
$$w_t(x,t) = -\sigma(t)w_x(x,t) + \frac{1}{R(x,t)}(w-u)$$

with the following boundary conditions

Discretize the PDE in space to form an ODE

 $\dot{U} = -DAU + h(U) + \frac{1}{R}(W - U)$ $\dot{W} = -\sigma(t)BW + \frac{1}{R}(U - W)$

where AU approximates u_{xx} and BW approximates w_x using finite differences. Use this discretization to derive the HJB equation.

HJB control of the pack cooling problem

Theorem 4.1. Let $u(\cdot, t), w(\cdot, t) \in L_2[0,1]$. With $\sigma(t) \in [0,1]$ and the reward function $L(u(\cdot, t), w(\cdot, t)) \in L_2[0,1]$. $|,t),\sigma(t) = -||u(\cdot,t+\Delta t)||_{2}^{2}$, the HJB equation for the 1D pack cooling problem is:

 $(\gamma - 1)V - \left| \left| u(\cdot, t + \Delta t) \right| \right|^2 + \left\langle V_u \left(u(\cdot, t), w(\cdot, t) \right), u_t(\cdot, t) \right\rangle + \frac{1}{R} \left\langle V_w \left(u(\cdot, t), w(\cdot, t) \right), u(\cdot, t) - w(\cdot, t) \right\rangle$ $+ \max(0, -\langle V_w(u(\cdot, t), w(\cdot, t)), w_x(\cdot, t) \rangle) = 0$

where $|| \cdot ||$ is the $L_2[0,1]$ norm and $\langle \cdot, \cdot \rangle$ is the $L_2[0,1]$ inner product.

Corollary 4.2. Let $u(\cdot, t), w(\cdot, t) \in L_2[0,1]$. With $\sigma(t) \in [0,1]$ and the reward function $L(u(\cdot, t), w(\cdot, t)) \in L_2[0,1]$. $(t, t), \sigma(t) = - ||u(\cdot, t + \Delta t)||_{2}^{2}$, provided the optimal value function $V^{*}(u, w)$ with $V_{w}^{*}(\cdot, t) \in L_{2}[0, 1]$, the optimal controller for the 1D pack cooling problem is:

 $\sigma^{*}(t) = \begin{cases} 1, \langle V_{w}^{*}(u(\cdot, t)), w(\cdot, t) \rangle < 0, \\ 0, otherwise \end{cases}$

where $\langle \cdot, \cdot \rangle$ is the $L_2[0,1]$ inner product.

New loss functions for the value network

Proposed algorithms

HJB value iteration

- Initiate value network parameter ϕ
- Run the controller $\tilde{\sigma}(t)$ in the environment for *T* timesteps and observe 2. samples $\{(s_t, a_t, R_t, s_{\{t+1\}})\}_{t=1}^T$
- Compute the value network loss as: $J(\phi) = MSE_f + MSE_u + MSE_n$ 3.
- Update $\phi \leftarrow \phi \alpha \nabla_{\phi} J(\phi)$ 4.
- 5. Run steps 2-4 for multiple iterations

HJBPPO – Action Selection

Retrieve state s_t , policy network parameter θ and value network parameter ϕ Sample $i \in \{0,1\}$

- 2. 3. if i = 0 then select the controller $\tilde{\sigma}(t)$
- 4. else run policy $\pi_{\theta}(\cdot | s_t)$ 5.
 - end

Hamilton Jacobi Bellman Proximal Policy **Optimization (HJBPPO)**

$$u_{x}(0,t) = u_{x}(1,t) = 0$$

$$w(0,t) = U(t)$$
where

u: Temperature distribution across battery pack
w: Temperature distribution across cooling fluid
D: Thermal diffusion constant
 R_{T} : Thermal resistance
h: Internal heat generation in the battery pack
U: temperature of the cooling fluid at the boundary
 σ : Transport speed of the cooling fluid (controller)
Objective of the controller:
Maximize $\int_{0}^{\infty} \int_{0}^{1} \gamma^{t} (-u(x,t)^{2}) dx dt$
Environment parameters:
 $h(x,t,u(x,t)) = e^{0.1u(x,t)}$
 $u(x,0) = \sum_{n=0}^{9} C_{n} \cos(\pi nx)$
 $\Delta x = 0.01, \Delta t = 0.01$
 $U(t) = -5.0, D(x,t) = 0.01, R(x,t) = 2.0$

The HJB equation

Consider a controlled dynamical system modeled by the following equation:

$$\dot{x} = f(x, u), \qquad x(t_0) = x_0$$

In control theory, the optimal value function $V^*(x)$ is useful towards finding a solution to control problems:

$$V^{*}(t) = \sup_{\sigma} \frac{1}{\Delta t} \int_{t_{0}}^{\infty} \gamma^{\frac{t}{\Delta t}} L(x(\tau; t_{0}, x_{0}, \sigma(\cdot)), \sigma(\tau)) d\tau$$

where $L(x, \sigma)$ is the reward function, Δt is the time step size for numerical simulation, and γ is the discount factor.

Theorem 2.1. A function V(x) is the optimal value function if and only if:

1. $V \in C^1(\mathbb{R}^n)$ and V satisfies the Hamilton-Jacobi-Bellman (HJB) Equation

 $(\gamma - 1)V(x) + \sup_{\sigma \in U} \{L(x, \sigma) + \gamma \Delta t \nabla_x V^T(x) f(x, \sigma)\} = 0$

2. For all $x \in \mathbb{R}^n$, there exists a controller $\sigma^*(\cdot)$ such that:

```
L(x,\sigma^*(x)) + \gamma \Delta t \nabla_x V^T(x) f(x,\sigma^*(x))
= \sup \{ L(x, \hat{\sigma}(x)) + \gamma \Delta t \nabla_x V^T(x) f(x, \hat{\sigma}(x)) \}
```

Derived from the HJB equation:

$$MSE_{f}$$

$$= \frac{1}{T} \sum_{t=0}^{T-1} \left((\gamma - 1)V - \left| \left| u(\cdot, t + \Delta t) \right| \right|^{2} + \left\langle V_{u}(u(\cdot, t), w(\cdot, t)), u_{t}(\cdot, t) \right\rangle \right.$$

$$+ \frac{1}{R} \left\langle V_{w}(u(\cdot, t), w(\cdot, t)), u(\cdot, t) - w(\cdot, t) \right\rangle + \max(0, -\left\langle V_{w}(u(\cdot, t), w(\cdot, t)), w_{x}(\cdot, t) \right\rangle) \right)^{2}$$
At $u(x, T) = 0, w(x, T) = -R(x, t)$, we have: $u(x, T) = 0$ and $u_{t}(x, T) = 0$. Thus, $V(0, -R(x, t)) = 0$.

$$MSE_{u} = \left(V(0, -R(x, t)) \right)^{2} = \left(V(0, -2) \right)^{2}$$
At $u(x, T) = 0, w(x, T) = -R(x, t)$, V achieves its global maximum.

$$MSE_{n} = \left| \left| \nabla_{u}V(0, -R(x, t)) \right| \right|_{2}^{2} + \left| \left| \nabla_{w}V(0, -R(x, t)) \right| \right|_{2}^{2}$$
Controller:

$$\tilde{\sigma}(t) = \begin{cases} 1, \left\langle V_{w}(u(\cdot, t)), w(\cdot, t) \right\rangle < 0, \\ 0, otherwise \end{cases}$$

Reward curves of PPO (red), HJB value iteration (blue), and HJBPPO (green) averaged over 5 seeds. Shaded area indicates 0.2 standard deviations.

Initiate policy network parameter θ and value network parameter ϕ Run action selection as given earlier for T timesteps and observe 2. samples { (s_t, a_t, R_t, s_{t+1}) } Compute the advantage $A_t = \delta t + (\gamma \lambda) \delta_{t+1} + \dots + (\gamma \lambda)^{T-t-1} \delta_{T-1}$ where 3. $\delta = R_t + \gamma V_{\phi}(s_{t+1}) - V_{\phi}(s_t), \gamma$: Discount factor (≈ 0.99) and λ : Smoothing factor (≈ 0.95) Compute $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$ Compute the objective function of the policy network: $L(\theta) =$ 5. $\frac{1}{\tau}\sum_{t=0}^{T-1}\min[r_t(\theta)A_t, clip(r_t(\theta), 1-\epsilon, 1+\epsilon)A_t] \text{ where } \varepsilon: \text{ clipping }$ parameter (≈ 0.2) Update $\theta \leftarrow \theta - \alpha_1 \nabla_{\phi} L(\theta)$ 6. Compute the value network loss as: $J(\phi) = MSE_f + MSE_u + MSE_n$ 7. Update $\phi \leftarrow \phi - \alpha_2 \nabla_{\phi} J(\phi)$ 8. 9. Run steps 2-5 for multiple iterations

Trajectory of HJB value iteration. Cummulative reward: -7294.51

Trajectory of HJBPPO. Cummulative reward: -881.55