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Step1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.
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Explain reinforcement

learning to a 6 year old.
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We give treats and
punishments to teach.

Step2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks the
outputs from best
toworst.

This data is used
to train our
reward model.
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Explain reinforcement.

learning to a 6 year old.

Step3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is W 3
sampled from Writea story
the dataset. aboutotters.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model

calculates a reward N
for the output. N7
The reward is used *
to update the r

3

policy using PPO.
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Intro



What is Reinforcement Learning

Wikipedia: reinforcement learning is an area of machine learning
inspired by behavioral psychology, concerned with how software
agents ought to take actions in an environment so as to maximize
some notion of cumulative reward.



Reinforcement Learning Problem

Agent

State eward Action

Environment

(Poupart, 2022)
Goal: Learn to choose actions that maximize rewards



Motivation - Animal Psychology

iy CATGP&J)TEING
Negative reinforcement:

- Hunger and scolding f}“f I YE
\ / \

Goal: Maximize the quantity of WVOK
positive reinforcement { N
FEELING LUCKY?



Example: Inverted pendulum

State:
- Displacement of platform
- Velocity of platform
- Angular displacement of pole
- Angular velocity of pole
Action:
- Force applied to platform
(-3,3])
Reward R(s, a):

- 1for every time step the pole
is upright
- 0 otherwise (Gouldo, 2022)




Important Components in RL

Dataset:
{(Sta at7 rbst-‘ﬂ)}z—:_(;
RL agents may or may not include the following components:
- Model P(s’|s,a), P(rl|s, a)
Environment dynamics and rewards
- Policy w(als)
Agent action choices

- Value function V(s)
Expected total rewards of the agent policy



Value function

Given policy , estimate Vy(s)
Monte-Carlo estimation: V(s) = Ex[>_,v'ri]

Bellman's Equation:
Optimal state value function V*(s):

V*(s) = max (E[rs, a+v>_ P(s'ls, a)V*(s’))

X

Update:

¢+ & —aVy (Va(st) — (1 +1Ve(st41)))”



Extension: Q function

Q(s, a) estimates total rewards of the agent policy at state s when
applying action a

Update (Q-Learning):

Q(s,a) + Q(s,a) + a(r + 7 max Q(s’,a’) — Q(s,a))

Update (Deep Q-Learning):
W W — aVy(r +ymax Qu(s’, @) — Qu(s, a))?
a/

(Weights of Qu(s’, a’) are frozen)



Policy function

mg(als): Probability of choosing action a given state s

- Facilitates exploration

Goal of optimal policy: Choose a sequence of actions that maximize
rewards.

VoVo(s0) = Xses Zn=o Y "Pr(sq = s;1,0) X Vg mg(als) Qo (s, a)
= Eg[Yn=o V" Xa Q9 (Sn a)Vg mg(alSy)]

= 5o [Zor" Zamo(alSy) Cutsn P meleon)
= By [£507™ Qo (S An) e rn)]
_ o .np Veme(An|Sn)
= Eo[Sior" 6n 7 ue)
= EglS50 1™ GaVe logmo(AnlSy)]
(Poupart, 2022)
Update (REINFORCE):
T—n

0 <+ 0 + ay"G, Vg log(me(an|sn)), where G, = nytrHH
t=0



Actor-Critic methods

Use a policy network mg(als) as an actor and a value network Vy(s)
as a critic.

Update (REINFORCE with Baseline):
5n =Gy — V¢(Sn)

¢ — ¢ — Vb7
6 < 60+ ay"0,Vy log(7e(an|sn))

See also: Advantage Actor-Critic, Deep Deterministic Policy Gradient
(DDPG), Twin Delayed Deep Deterministic Policy Gradient (TD3)
- Uses Q Network as a critic rather than Value Network
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Trust Region Policy Optimization
(TRPO) & Proximal Policy
Optimization (PPO)



Recall Policy Gradient

Learning rate is difficult to set

- Small LR: Slow but reliable convergence

- Large LR: Fast but unreliable convergence



Trust region method

We want to optimize a surrogate
objective function for the policy
network using the value function.
Surrogate objective may be
trustable (close to V) only in a
small region.

Limit search to small region.
Value network varies more
smoothly with changes in policy
network compared to policy
network parameters.

Trust-Region Step
ofIQuadralic model

./ Line Search Direction
_-="~ of Quadratic model

i
Gradient
Direction

Choi, Choi (2005)



Solution as proposed in TRPO

Define a policy trust region using the Kullback-Leibler divergence:
KL(mo(+|5)lma,,(+15))

Optimization problem:
6 < argmaxgE [V™(s) — V™o (s)] st. E [KL(mo(:|S)||moyu(.1s))] < O

Using the following approximation (Proof on next page):

mo(als)
71—(’om(a|s)

Update step for TRPO:

V7o (S) =V (S) ~ A(s,a), where A(s,a) = R(s,a)+yV(s")—V(s)

mo(als)

0 < argmax,E | ———
sty [m(as)

A(s.,a)} st. E [KL(ma(-|S)||ma,0(15))] < &
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Derivation

m5(AlS) n5(als)
st 0 sy A0 (5, @] = argmax B g () Za o (als) [ A0 5. )]

argmax E;

= argmax Y5 g (s) La g (als) Ag(s, a)
¢ since ug = pg

~ argmax s 45 (s) Xa g (als)Ae (s, a)
? since 15(s) % T20¥"Pg(sy = )

= argmax Zs Xm0 V" Pg(sn = 5) Xamg(als)Ae(s, a)

= argmax Eso,sl,...~P§ ,80,a1,..~Trg [Z:ﬁ:o Y™ Ag(sp, an)]
(]

W UNIVERSITY OF
CS885 Fall 2022 - Lecture 6a - Pascal Poupart PAGE 9 @ WATERLOO



Derivation (continued)

= arggnax Eso,sl,...~P§  Go,01,..~Tg En=o¥™Ag(sn, an)]
since Ag (s, @) = Egr_p(st)s,q)[T(8) + YV (s") = V™(s)]
= argmax Esys, .~y gy L0i-0 V"7 (5) + YV (542) = V70 (50)
= arg{;nax Esys,,..~Py, agay,..~mz [ Lm=0 ¥ 'T(5n) — V7 (s0)]
= argmax Es,s,,.~py, a0ay,..-mg (V™8 (s0) — V™ (s0)]
= arggnax Eg~p[V™8(s0) — V™ (s0)]

GaF] (UNIVERSITY OF
€S885 Fall 2022 - Lecture 6a - Pascal Poupart PAGE 10 @ WATERLOO



Constrained Optimization

_mo(als) .
0 < argmax,E [WOD[G(GS)A(S,G)} St E [KL(mo(-[5)|[ma,4(15))] < &

Problem with TRPO: Optimization problem is computationally
expensive

Recall KL-Divergence:

KL (o (-1)| [, ( Z”@ als) log( (?C'ISS)))

We are effectively constraining the ratio WZ" ‘Z
old



Simpler Objective

g (als)

Let's design a simpler objective that constrains o (aTS)

o(d(

. me(als) . me(als)
argmaxyE [mln (A(s, a),clip(——=,1—¢,1+ €)A(s, )
’ ﬂ-eold(a|s) 7T9md(a‘s)
A<O
LOLIP A>0
1-€e1
: ,‘ t T
i r |
0 1 1+e¢ LCLIP

(Schulman et al,, 2017) 18



PPO Algorithm

1.

4. Compute ry(0) =
. Compute the objective function of the policy network:

Initiate policy network parameter # and value network
parameter ¢

. Run the policy 7y in the environment for T timesteps. Get

-1
dataset {s¢, ar, Re, St41 1}

. Compute the reward R; and the advantage A;

At = o + (’)//\)(St_H + ...+ (’yA)T_t_W(ST_j where
5t = Rt + Ws(Set1) — Ve(st), 7 Discount factor (=~ 0.99) and X:
Smoothing factor (=~ 0.95)

o (at|St)
T (tlSt)

L(0) = 7 Zt o min[re(8)As, clip(re(6),1 — €, 14 €)A:] where e
clipping parameter (=~ 0.2)

. Update 6 «+ 6 + anVyL(0)

7. Compute the value network loss as:

J(8) = § 2i20 Ve(se) = (Re + Ve (5t0)) P

8. Update ¢ « qS — Vyl()

O

Repeat steps 2-8 for multiple iterations 19
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- Soft Actor Critic (SAC)
- Stochastic policy based on entropy maximization

- PPO-penalty
- Constrained RL

- Conservative SAC
- Offline RL

- C51
- Distributional RL

- Decision Transformers
- Partially Observable RL

- Hamilton Jacobi Bellman Proximal Policy Optimization (H)BPPO)
- Continuous Time RL

21



PPO for ChatGPT




Reinforcement Learning from Human Feedback (RLHF)

Human Al trainers provided conversations where they played both
sides - the user and a chatbot
Combine with InstructGPT dataset

22



Comparison data

Model outputs multiple responses to a prompt

Human Al trainers ranked each response from best to worst
Rewards were computed from rank

23



Step1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.
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Explain reinforcement

learning to a 6 year old.
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We give treats and
punishments to teach.

Step2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks the
outputs from best
toworst.

This data is used
to train our
reward model.
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Step3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is W 3
sampled from Writea story
the dataset. aboutotters.

The PPO modelis

initialized from the A

supervised policy.

The policy generates Onge upon atime.

an output.

The reward model A

calculates a reward N

for the output. N7

The reward is used *

to update the r -
3

policy using PPO.
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Open Problem

How to use reinforcement learning to facilitate the training of
transformers?

26
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